To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Magnesium stearate

From Wikipedia, the free encyclopedia

Magnesium stearate
Names
IUPAC name
Magnesium octadecanoate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.320 Edit this at Wikidata
E number E572 (acidity regulators, ...)
UNII
  • InChI=1S/2C18H36O2.Mg/c2*1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;/h2*2-17H2,1H3,(H,19,20);/q;;+2/p-2 checkY
    Key: HQKMJHAJHXVSDF-UHFFFAOYSA-L checkY
  • InChI=1/2C18H36O2.Mg/c2*1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;/h2*2-17H2,1H3,(H,19,20);/q;;+2/p-2
    Key: HQKMJHAJHXVSDF-NUQVWONBAM
  • [Mg+2].[O-]C(=O)CCCCCCCCCCCCCCCCC.[O-]C(=O)CCCCCCCCCCCCCCCCC
Properties
Mg(C
18
H
35
O
2
)
2
Molar mass 591.27 g/mol
Appearance light white powder
Odor slight
Density 1.026 g/cm3
Melting point 88.5 °C (191.3 °F; 361.6 K)
0.003 g/100 mL (15 °C)
0.004 g/100 mL (25 °C)
0.008 g/100 mL (50 °C)
Solubility negligible in ether and alcohol
slightly soluble in benzene
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Flash point 250 °C (482 °F; 523 K)
Lethal dose or concentration (LD, LC):
> 1000 mg/kg (oral, rat)
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Magnesium stearate is the chemical compound with the formula Mg(C
18
H
35
O
2
)
2
. It is a soap, consisting of salt containing two equivalents of stearate (the anion of stearic acid) and one magnesium cation (Mg2+). Magnesium stearate is a white, water-insoluble powder. Its applications exploit its softness, insolubility in many solvents, and low toxicity. It is used as a release agent and as a component or lubricant in the production of pharmaceuticals and cosmetics.[1]

YouTube Encyclopedic

  • 1/5
    Views:
    2 045
    11 895
    822
    1 284
    635
  • Magnesium Stearate Excipient: What It Is, Its Safety and How It Is Used
  • Magnesium Stearate | LFA Tablet Presses
  • What is Magnesium Stearate? Part 1 #supplements #capsules #asmr #capsule #machine #capsulefilling
  • Lucrative Production Business of Magnesium Stearate | Business Opportunities in Chemical Industry.
  • What is Magnesium Stearate? Part 2 #supplements #capsules #asmr #capsule #machine #capsulefilling

Transcription

Manufacturing

Magnesium stearate is produced by the reaction of sodium stearate with magnesium salts or by treating magnesium oxide with stearic acid.[1][2]

Uses

Magnesium stearate is often used as an anti-adherent[3] in the manufacture of medical tablets, capsules and powders.[4] In this regard, the substance is also useful because it has lubricating properties, preventing ingredients from sticking to manufacturing equipment during the compression of chemical powders into solid tablets; magnesium stearate is the most commonly used lubricant for tablets.[5] However, it might cause lower wettability and slower disintegration of the tablets and slower and even lower dissolution of the drug.[6]

Magnesium stearate can also be used efficiently in dry coating processes.[7][8][9]

In the production of pressed candies, magnesium stearate serves as a release agent. It is also used to bind sugar in hard candies such as mints.[10]

Magnesium stearate is a common ingredient in baby formulas.[11]

In the EU and EFTA it is listed as food additive E470b.

Occurrence

Magnesium stearate is a major component of bathtub rings[citation needed]. When produced by soap and hard water, magnesium stearate and calcium stearate both form a white solid insoluble in water, and are collectively known as soap scum.

Safety

Magnesium stearate is generally considered safe for human consumption at levels below 2500 mg per kg of body weight per day[12] and is classified in the United States as generally recognized as safe (GRAS). In 1979, the FDA's Subcommittee on GRAS Substances (SCOGS) reported, "There is no evidence in the available information on ... magnesium stearate ... that demonstrates, or suggests reasonable grounds to suspect, a hazard to the public when they are used at levels that are now current and in the manner now practiced, or which might reasonably be expected in the future."[13]

References

  1. ^ a b Angelo Nora, Alfred Szczepanek, Gunther Koenen, "Metallic Soaps" in Ullmann's Encyclopedia of Industrial Chemistry 2005 Wiley-VCH, Weinheim. doi:10.1002/14356007.a16_361
  2. ^ A. G. Dobson and H. H. Hatt (1953). "Stearone". Organic Syntheses. 33: 84. doi:10.15227/orgsyn.033.0084.
  3. ^ Ritter, Steve (2008). "What's That Stuff? Excipients: Inactive ingredients in medicines serve multiple functions in drug delivery". Chemical & Engineering News. 86 (1): 25. doi:10.1021/cen-v086n001.p025.
  4. ^ Sworbrick, James; Boylan, James C. (1990). Encyclopedia of pharmaceutical technology. Taylor & Francis. p. 2274. ISBN 978-0-8247-2824-3.
  5. ^ Weiner, Myra L.; Kotkoskie, Lois A. (1999). Excipient Toxicity and Safety. Taylor & Francis. p. 10. ISBN 978-0-8247-8210-8.
  6. ^ Demuth; et al. (2017). "Investigation of Deteriorated Dissolution of Amorphous Itraconazole: Description of Incompatibility with Magnesium Stearate and Possible Solutions". Molecular Pharmaceutics. 14 (11): 3927–3934. doi:10.1021/acs.molpharmaceut.7b00629. PMID 28972782.
  7. ^ Ouabbas Y, Dodds J., Galet L., Chamayou A. , Baron M. (2009). "Particle-particle coating in a cyclomix impact mixer" (PDF). Powder Technol. 189 (2): 245–252. doi:10.1016/j.powtec.2008.04.031.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Thomas G., Ouabbas Y., Grosseau P., Baron M., Chamayou A., Galet L. (2009). "Modeling the main interaction forces between powder particles. Application to silica gel-magnesium stearate mixtures". Applied Surface Science. 255 (17): 7500–7507. Bibcode:2009ApSS..255.7500T. CiteSeerX 10.1.1.591.1899. doi:10.1016/j.apsusc.2009.03.099.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Sato A., Serris E., Grosseau P., Thomas G., Galet L., Chamayou A. , Baron M. (2013). "Experiment and simulation of dry particle coating" (PDF). Chem. Eng. Science. 86: 164–172. Bibcode:2013ChEnS..86..164S. doi:10.1016/j.ces.2012.07.037.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ https://www.ctahr.hawaii.edu/oc/freepubs/pdf/FST-9.pdf [bare URL PDF]
  11. ^ Erich Lück and Gert-Wolfhard von Rymon Lipinski (2002). "Foods, 3. Food Additives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_561. ISBN 978-3-527-30673-2.
  12. ^ Søndergaarda, D.; Meyera, O.; Würtzena, G. (1980). "Magnesium stearate given peroprally to rats. A short term study". Toxicology. 17 (1): 51–55. doi:10.1016/0300-483X(80)90026-8. PMID 7434368.
  13. ^ FDA's SCOGS Database; Report No. 60; ID Code: 557-04-0; Year: 1979
This page was last edited on 4 April 2024, at 14:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.