To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

The Multicore Communications API (MCAPI) is the first specification to be produced by the Multicore Association. MCAPI provides a standardized API for communication and synchronization between closely distributed (multiple cores on a chip and/or chips on a board) embedded systems.

YouTube Encyclopedic

  • 1/1
    Views:
    2 928
  • Java + Arduino Ethernet Shield; Minecraft Server status indicator

Transcription

Overview

MCAPI is a language-independent, processor and operating system agnostic communications protocol used to program multi-core devices. MCAPI provides three modes of communication: messages, packets, and scalars. MCAPI is a message-passing application programmer interface, together with protocol and semantic specifications for how its features must behave in any implementation. The primary goals for any MCAPI implementation are extremely high performance and low memory footprint.

MCAPI traces its heritage to communications APIs such as MPI and Berkeley sockets. Both MPI and sockets were developed primarily with inter-computer communication in mind, while MCAPI is targeted primarily towards inter-core communication in a multicore chip. Accordingly, a principal design goal of MCAPI was to serve as a low-latency interface leveraging efficient on-chip interconnect in a multicore chip. However, because of the more limited scope of multicore communications and its goal of low latency, MCAPI is less flexible than MPI or Sockets.

MCAPI Communication Modes

MCAPI provides three modes of communication:

  1. messages – connection-less datagrams. Messages are intended to be flexible with respect to payload, dynamically changing receivers and priorities and configuration effort, although at a slight performance penalty.
  2. packets – connection-oriented, arbitrary size, uni-directional, and FIFO streams. Packets are intended to be flexible with respect to payload, providing higher performance than messages at the expense of configuration effort.
  3. scalars – connection-oriented, fixed size, uni-directional, and FIFO streams. Scalars are intended to be the highest performance communications mode, albeit at the expense of payload flexibility and configuration effort.

MCAPI Compared to MPI

MCAPI is focused purely on embedded communications, and adds the ideas of messages, packets, and scalars + connected channels. This allows MCAPI to support various quality of service, where connected channels may exploit underlying embedded hardware. Furthermore MCAPI supports various kinds of priorities, messages can have a per message priority and channels can be treated as having different priorities as well, allowing implementations to map some or all channels to dedicated hardware. MCAPI can also support zero-copy via assigning attributes to connected channels.

Other big differences include:

  • MCAPI has no language binding for FORTRAN since this is not commonly found in embedded systems.
  • MCAPI does not support collective communications as in MPI. This allows MCAPIv to have a smaller implementation.
  • MCAPI does not have the concepts of groups.
  • MCAPI does not have any synchronization methods as in MPI, no barriers, no fences, no locks.
  • MCAPI has no file objects or any functions associated with them.
  • MCAPI has no model for creation or management of processes.

References

  • Holt, Jim; Agarwal, Anant; Brehmer, Sven; Domeika, Max; Griffin, Patrick; Schirrmeister, Frank (June 2009), "Software Standards for the Multicore Era", IEEE Micro, 29 (3): 40–51, doi:10.1109/MM.2009.48, hdl:1721.1/52432

External links

This page was last edited on 1 January 2024, at 02:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.