To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lorenz gauge condition

From Wikipedia, the free encyclopedia

In electromagnetism, the Lorenz gauge condition or Lorenz gauge (after Ludvig Lorenz) is a partial gauge fixing of the electromagnetic vector potential by requiring The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field.[1] The condition is Lorentz invariant. The Lorenz gauge condition does not completely determine the gauge: one can still make a gauge transformation where is the four-gradient and is any harmonic scalar function: that is, a scalar function obeying the equation of a massless scalar field.

The Lorenz gauge condition is used to eliminate the redundant spin-0 component in Maxwell's equations when these are used to describe a massless spin-1 quantum field. It is also used for massive spin-1 fields where the concept of gauge transformations does not apply at all.

YouTube Encyclopedic

  • 1/5
    Views:
    25 461
    10 132
    16 293
    1 464
    16 132
  • 7.4.3 The Lorenz Gauge
  • LORENTZ GAUGE || ELECTRODYNAMICS || WITH EXAM NOTES ||
  • Lorentz Gauge Derivation | Explained in hindi | MSC PHYSICS
  • Maxwell’s equations in potential form with the Lorenz and Coulomb gauge conditions
  • L13.4 Charged particles in EM fields: potentials and gauge invariance

Transcription

Description

In electromagnetism, the Lorenz condition is generally used in calculations of time-dependent electromagnetic fields through retarded potentials.[2] The condition is

where is the four-potential, the comma denotes a partial differentiation and the repeated index indicates that the Einstein summation convention is being used. The condition has the advantage of being Lorentz invariant. It still leaves substantial gauge degrees of freedom.

In ordinary vector notation and SI units, the condition is

where is the magnetic vector potential and is the electric potential;[3][4] see also gauge fixing.

In Gaussian units the condition is[5][6]

A quick justification of the Lorenz gauge can be found using Maxwell's equations and the relation between the magnetic vector potential and the magnetic field:

Therefore,

Since the curl is zero, that means there is a scalar function such that

This gives a well known equation for the electric field:

This result can be plugged into the Ampère–Maxwell equation,

This leaves

To have Lorentz invariance, the time derivatives and spatial derivatives must be treated equally (i.e. of the same order). Therefore, it is convenient to choose the Lorenz gauge condition, which makes the left hand side zero and gives the result

A similar procedure with a focus on the electric scalar potential and making the same gauge choice will yield

These are simpler and more symmetric forms of the inhomogeneous Maxwell's equations.

Here

is the vacuum velocity of light, and is the d'Alembertian operator with the (+ − − −) metric signature. These equations are not only valid under vacuum conditions, but also in polarized media,[7] if and are source density and circulation density, respectively, of the electromagnetic induction fields and calculated as usual from and by the equations

The explicit solutions for and – unique, if all quantities vanish sufficiently fast at infinity – are known as retarded potentials.

History

When originally published in 1867, Lorenz's work was not received well by James Clerk Maxwell. Maxwell had eliminated the Coulomb electrostatic force from his derivation of the electromagnetic wave equation since he was working in what would nowadays be termed the Coulomb gauge. The Lorenz gauge hence contradicted Maxwell's original derivation of the EM wave equation by introducing a retardation effect to the Coulomb force and bringing it inside the EM wave equation alongside the time varying electric field, which was introduced in Lorenz's paper "On the identity of the vibrations of light with electrical currents". Lorenz's work was the first use of symmetry to simplify Maxwell's equations after Maxwell himself published his 1865 paper. In 1888, retarded potentials came into general use after Heinrich Rudolf Hertz's experiments on electromagnetic waves. In 1895, a further boost to the theory of retarded potentials came after J. J. Thomson's interpretation of data for electrons (after which investigation into electrical phenomena changed from time-dependent electric charge and electric current distributions over to moving point charges).[2]

See also

References

  1. ^ Jackson, J.D.; Okun, L.B. (2001), "Historical roots of gauge invariance", Reviews of Modern Physics, 73 (3): 663–680, arXiv:hep-ph/0012061, Bibcode:2001RvMP...73..663J, doi:10.1103/RevModPhys.73.663, S2CID 8285663
  2. ^ a b McDonald, Kirk T. (1997), "The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips" (PDF), American Journal of Physics, 65 (11): 1074–1076, Bibcode:1997AmJPh..65.1074M, CiteSeerX 10.1.1.299.9838, doi:10.1119/1.18723, S2CID 13703110, archived from the original (PDF) on 2022-05-19
  3. ^ Jackson, John David (1999). Classical Electrodynamics (3rd ed.). John Wiley & Sons. p. 240. ISBN 978-0-471-30932-1.
  4. ^ Keller, Ole (2012-02-02). Quantum Theory of Near-Field Electrodynamics. Springer Science & Business Media. p. 19. Bibcode:2011qtnf.book.....K. ISBN 9783642174100.
  5. ^ Gbur, Gregory J. (2011). Mathematical Methods for Optical Physics and Engineering. Cambridge University Press. p. 59. Bibcode:2011mmop.book.....G. ISBN 978-0-521-51610-5.
  6. ^ Heitler, Walter (1954). The Quantum Theory of Radiation. Courier Corporation. p. 3. ISBN 9780486645582.
  7. ^ For example, see Cheremisin, M. V.; Okun, L. B. (2003). "Riemann-Silberstein representation of the complete Maxwell equations set". arXiv:hep-th/0310036.

External links and further reading

General
Further reading
History
This page was last edited on 16 May 2024, at 15:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.