To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

The Kaiser window for several values of its parameter

The Kaiser window, also known as the Kaiser–Bessel window, was developed by James Kaiser at Bell Laboratories. It is a one-parameter family of window functions used in finite impulse response filter design and spectral analysis. The Kaiser window approximates the DPSS window which maximizes the energy concentration in the main lobe[1] but which is difficult to compute.[2]

YouTube Encyclopedic

  • 1/3
    Views:
    7 410
    9 344
    4 725
  • Kaiser Window Method- FIR Coeffiecient Calculation
  • Module3_Vid_24_FIR Digital Filters_FIR filter design using Kaiser window
  • FIR filter design by windowing: Kaiser window, python example (0001,Py)

Transcription

Definition

The Kaiser window and its Fourier transform are given by:

  [3][A]
Fourier transforms of two Kaiser windows

where:

  • I0 is the zeroth-order modified Bessel function of the first kind,
  • L is the window duration, and
  • α is a non-negative real number that determines the shape of the window. In the frequency domain, it determines the trade-off between main-lobe width and side lobe level, which is a central decision in window design.
  • Sometimes the Kaiser window is parametrized by β, where β = πα.

For digital signal processing, the function can be sampled symmetrically as:

where the length of the window is and N can be even or odd. (see A list of window functions)

In the Fourier transform, the first null after the main lobe occurs at which is just in units of N (DFT "bins"). As α increases, the main lobe increases in width, and the side lobes decrease in amplitude.  α = 0 corresponds to a rectangular window. For large α, the shape of the Kaiser window (in both time and frequency domain) tends to a Gaussian curve.  The Kaiser window is nearly optimal in the sense of its peak's concentration around frequency [5]

Kaiser–Bessel-derived (KBD) window

A related window function is the Kaiser–Bessel-derived (KBD) window, which is designed to be suitable for use with the modified discrete cosine transform (MDCT). The KBD window function is defined in terms of the Kaiser window of length N+1, by the formula:

This defines a window of length 2N, where by construction dn satisfies the Princen-Bradley condition for the MDCT (using the fact that wNn = wn): dn2 + (dn+N)2 = 1 (interpreting n and n + N modulo 2N). The KBD window is also symmetric in the proper manner for the MDCT: dn = d2N−1−n.

Applications

The KBD window is used in the Advanced Audio Coding digital audio format.

Notes

  1. ^ An equivalent formula is:[4]

References

  1. ^ "Slepian or DPSS Window". ccrma.stanford.edu. Retrieved 2016-04-13.
  2. ^ Oppenheim, A. V.; Schafer, R. W. (2009). Discrete-time signal processing. Upper Saddle River, N.J.: Prentice Hall. p. 541. ISBN 9780131988422.
  3. ^ Nuttall, Albert H. (Feb 1981). "Some Windows with Very Good Sidelobe Behavior". IEEE Transactions on Acoustics, Speech, and Signal Processing. 29 (1): 89 (eq.38). doi:10.1109/TASSP.1981.1163506.
  4. ^ Smith, J.O. (2011). "Kaiser Window in Spectral Audio Signal Processing, eq.(4.40 & 4.42)". ccrma.stanford.edu. Retrieved 2022-01-01. where
  5. ^ Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). "7.2". Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p. 474. ISBN 0-13-754920-2. a near-optimal window could be formed using the zeroth-order modified Bessel function of the first kind

Further reading

This page was last edited on 8 April 2024, at 11:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.