To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, particularly in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel.

If the groups are abelian varieties, then any morphism f : A → B of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that f(1A) = 1B. Such an isogeny f then provides a group homomorphism between the groups of k-valued points of A and B, for any field k over which f is defined.

The terms "isogeny" and "isogenous" come from the Greek word ισογενη-ς, meaning "equal in kind or nature". The term "isogeny" was introduced by Weil; before this, the term "isomorphism" was somewhat confusingly used for what is now called an isogeny.

YouTube Encyclopedic

  • 1/3
    Views:
    365
    830
    1 056
  • Endomorphisms, isogeny graphs, and moduli
  • Post-Quantum RSA Cryptography
  • 2 Challenges in Cryptography Research (ft. Serge Vaudenay)

Transcription

Case of abelian varieties

Isogenous elliptic curves to E can be obtained by quotienting E by finite subgroups, here subgroups of the 4-torsion subgroup.

For abelian varieties, such as elliptic curves, this notion can also be formulated as follows:

Let E1 and E2 be abelian varieties of the same dimension over a field k. An isogeny between E1 and E2 is a dense morphism f : E1 → E2 of varieties that preserves basepoints (i.e. f maps the identity point on E1 to that on E2).

This is equivalent to the above notion, as every dense morphism between two abelian varieties of the same dimension is automatically surjective with finite fibres, and if it preserves identities then it is a homomorphism of groups.

Two abelian varieties E1 and E2 are called isogenous if there is an isogeny E1 → E2. This can be shown to be an equivalence relation; in the case of elliptic curves, symmetry is due to the existence of the dual isogeny. As above, every isogeny induces homomorphisms of the groups of the k-valued points of the abelian varieties.

See also

References

  • Lang, Serge (1983). Abelian Varieties. Springer Verlag. ISBN 3-540-90875-7.
  • Mumford, David (1974). Abelian Varieties. Oxford University Press. ISBN 0-19-560528-4.
This page was last edited on 10 April 2023, at 11:01
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.