To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Interrupt vector table

From Wikipedia, the free encyclopedia

An interrupt vector table (IVT) is a data structure that associates a list of interrupt handlers with a list of interrupt requests in a table of interrupt vectors. Each entry of the interrupt vector table, called an interrupt vector, is the address of an interrupt handler (also known as ISR). While the concept is common across processor architectures, IVTs may be implemented in architecture-specific fashions. For example, a dispatch table is one method of implementing an interrupt vector table.

YouTube Encyclopedic

  • 1/3
    Views:
    12 257
    8 859
    39 648
  • 8086 Assembly Language | Part 04 - Interrupts and Intterupt Vector Table | By Vikash Mehta
  • TM4C123 Tutorial: Interrupt Vector Table - Adding Functions To The Table
  • Interrupt Handling

Transcription

Background

Most processors have an interrupt vector table, including chips from Intel, AMD, Infineon, Microchip[1] Atmel,[2] NXP, ARM[3][4] etc.

Interrupt handlers

Handling methods

An interrupt vector table is used in the three most popular methods of finding the starting address of the interrupt service routine:

"Predefined"

The "predefined" method loads the program counter (PC) directly with the address of some entry inside the interrupt vector table. The jump table itself contains executable code. While in principle an extremely short interrupt handler could be stored entirely inside the interrupt vector table, in practice the code at each entry is a single jump instruction that jumps to the full interrupt service routine (ISR) for that interrupt. The Intel 8080,[5] Atmel AVR[6][7] and all 8051 and Microchip microcontrollers[8] use the predefined approach.

"Fetch"

The "fetch" method loads the PC indirectly, using the address of some entry inside the interrupt vector table to pull an address out of that table, and then loading the PC with that address.[8] Each and every entry of the IVT is the address of an interrupt service routine. All Motorola/Freescale microcontrollers use the fetch method.[8]

"Interrupt acknowledge"

For the "interrupt acknowledge" method, the external device gives the CPU an interrupt handler number. The interrupt acknowledge method is used by the Intel Pentium and many older microprocessors.[8]

When the CPU is affected by an interrupt, it looks up the interrupt handler in the interrupt vector table, and transfers control to it.

See also

References

  1. ^ "dsPIC33F Family Reference Manual" section 29.1.1 Interrupt Vector Table
  2. ^ "AVR Libc User Manual" section: Introduction to avr-libc's interrupt handling
  3. ^ "Documentation – Arm Developer". developer.arm.com. Retrieved 2020-07-26.
  4. ^ "Documentation – Arm Developer – AArch64 exception vector table". developer.arm.com. Retrieved 2020-07-26.
  5. ^ Intel 8080 Microcomputer Systems User's Manual. Intel Corporation. September 1975. pp. 2–11 Interrupt Sequences. OCLC 2058546. OL 24210843M.
  6. ^ Roger L. Traylor. "Interrupts: AVR interrupt servicing"
  7. ^ Gary Hill. "Atmel AVR Interrupt and Timing Subsystems: ATMEGA328P interrupt vector table"
  8. ^ a b c d Huang, Han-Wat (2005). Pic Microcontroller: An Introduction to Software and Hardware Interfacing. Cengage Learning. p. 247. ISBN 978-1-4018-3967-3. Retrieved 22 April 2013.

External links

This page was last edited on 19 February 2024, at 23:51
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.