To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Integro-differential equation

From Wikipedia, the free encyclopedia

In mathematics, an integro-differential equation is an equation that involves both integrals and derivatives of a function.

YouTube Encyclopedic

  • 1/3
    Views:
    2 826
    1 062
    390 166
  • Electrical Engineering: Ch 16: Laplace Transform (58 of 58) Solve the Integrodifferential Equation
  • Integral Equation Laplace Transform
  • Laplace Transform to Solve a Differential Equation, Ex 1, Part 1/2

Transcription

General first order linear equations

The general first-order, linear (only with respect to the term involving derivative) integro-differential equation is of the form

As is typical with differential equations, obtaining a closed-form solution can often be difficult. In the relatively few cases where a solution can be found, it is often by some kind of integral transform, where the problem is first transformed into an algebraic setting. In such situations, the solution of the problem may be derived by applying the inverse transform to the solution of this algebraic equation.

Example

Consider the following second-order problem,

where

is the Heaviside step function. The Laplace transform is defined by,

Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,

Thus,

.

Inverting the Laplace transform using contour integral methods then gives

.

Alternatively, one can complete the square and use a table of Laplace transforms ("exponentially decaying sine wave") or recall from memory to proceed:

.

Applications

Integro-differential equations model many situations from science and engineering, such as in circuit analysis. By Kirchhoff's second law, the net voltage drop across a closed loop equals the voltage impressed . (It is essentially an application of energy conservation.) An RLC circuit therefore obeys

where is the current as a function of time, is the resistance, the inductance, and the capacitance.[1]

The activity of interacting inhibitory and excitatory neurons can be described by a system of integro-differential equations, see for example the Wilson-Cowan model.

The Whitham equation is used to model nonlinear dispersive waves in fluid dynamics.[2]

Epidemiology

Integro-differential equations have found applications in epidemiology, the mathematical modeling of epidemics, particularly when the models contain age-structure[3] or describe spatial epidemics.[4] The Kermack-McKendrick theory of infectious disease transmission is one particular example where age-structure in the population is incorporated into the modeling framework.

See also

References

  1. ^ Zill, Dennis G., and Warren S. Wright. “Section 7.4: Operational Properties II.” Differential Equations with Boundary-Value Problems, 8th ed., Brooks/Cole Cengage Learning, 2013, p. 305. ISBN 978-1-111-82706-9. Chapter 7 concerns the Laplace transform.
  2. ^ Whitham, G.B. (1974). Linear and Nonlinear Waves. New York: Wiley. ISBN 0-471-94090-9.
  3. ^ Brauer, Fred; van den Driessche, Pauline; Wu, Jianhong, eds. (2008). Mathematical Epidemiology. Lecture Notes in Mathematics. Vol. 1945. pp. 205–227. doi:10.1007/978-3-540-78911-6. ISBN 978-3-540-78910-9. ISSN 0075-8434.
  4. ^ Medlock, Jan (March 16, 2005). "Integro-differential-Equation Models for Infectious Disease" (PDF). Yale University. Archived from the original (PDF) on 2020-03-21.

Further reading

External links

This page was last edited on 13 November 2023, at 02:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.