To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Henselian ring

From Wikipedia, the free encyclopedia

In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by Azumaya (1951), who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative.

Some standard references for Hensel rings are (Nagata 1975, Chapter VII), (Raynaud 1970), and (Grothendieck 1967, Chapter 18).

YouTube Encyclopedic

  • 1/5
    Views:
    3 531
    971
    1 421
    372
    928
  • RIngs 22 Hensel's lemma
  • Commutative algebra 51: Hensel's lemma continued
  • Commutative algebra 61: Examples of regular local rings
  • Bertrand Toen, Algebraic geometry, categories and trace formulas
  • Session 11: Masterclass in Condensed Mathematics

Transcription

Definitions

In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings.

  • A local ring R with maximal ideal m is called Henselian if Hensel's lemma holds. This means that if P is a monic polynomial in R[x], then any factorization of its image P in (R/m)[x] into a product of coprime monic polynomials can be lifted to a factorization in R[x].
  • A local ring is Henselian if and only if every finite ring extension is a product of local rings.
  • A Henselian local ring is called strictly Henselian if its residue field is separably closed.
  • By abuse of terminology, a field with valuation is said to be Henselian if its valuation ring is Henselian. That is the case if and only if extends uniquely to every finite extension of (resp. to every finite separable extension of , resp. to , resp. to ).
  • A ring is called Henselian if it is a direct product of a finite number of Henselian local rings.

Properties

  • Assume that is an Henselian field. Then every algebraic extension of is henselian (by the fourth definition above).
  • If is a Henselian field and is algebraic over , then for every conjugate of over , . This follows from the fourth definition, and from the fact that for every K-automorphism of , is an extension of . The converse of this assertion also holds, because for a normal field extension , the extensions of to are known to be conjugated.[1]

Henselian rings in algebraic geometry

Henselian rings are the local rings with respect to the Nisnevich topology in the sense that if is a Henselian local ring, and is a Nisnevich covering of , then one of the is an isomorphism. This should be compared to the fact that for any Zariski open covering of the spectrum of a local ring , one of the is an isomorphism. In fact, this property characterises Henselian rings, resp. local rings.

Likewise strict Henselian rings are the local rings of geometric points in the étale topology.

Henselization

For any local ring A there is a universal Henselian ring B generated by A, called the Henselization of A, introduced by Nagata (1953), such that any local homomorphism from A to a Henselian ring can be extended uniquely to B. The Henselization of A is unique up to unique isomorphism. The Henselization of A is an algebraic substitute for the completion of A. The Henselization of A has the same completion and residue field as A and is a flat module over A. If A is Noetherian, reduced, normal, regular, or excellent then so is its Henselization. For example, the Henselization of the ring of polynomials k[x,y,...] localized at the point (0,0,...) is the ring of algebraic formal power series (the formal power series satisfying an algebraic equation). This can be thought of as the "algebraic" part of the completion.

Similarly there is a strictly Henselian ring generated by A, called the strict Henselization of A. The strict Henselization is not quite universal: it is unique, but only up to non-unique isomorphism. More precisely it depends on the choice of a separable algebraic closure of the residue field of A, and automorphisms of this separable algebraic closure correspond to automorphisms of the corresponding strict Henselization. For example, a strict Henselization of the field of p-adic numbers is given by the maximal unramified extension, generated by all roots of unity of order prime to p. It is not "universal" as it has non-trivial automorphisms.

Examples

  • Every field is a Henselian local ring. (But not every field with valuation is "Henselian" in the sense of the fourth definition above.)
  • Complete Hausdorff local rings, such as the ring of p-adic integers and rings of formal power series over a field, are Henselian.
  • The rings of convergent power series over the real or complex numbers are Henselian.
  • Rings of algebraic power series over a field are Henselian.
  • A local ring that is integral over a Henselian ring is Henselian.
  • The Henselization of a local ring is a Henselian local ring.
  • Every quotient of a Henselian ring is Henselian.
  • A ring A is Henselian if and only if the associated reduced ring Ared is Henselian (this is the quotient of A by the ideal of nilpotent elements).
  • If A has only one prime ideal then it is Henselian since Ared is a field.

References

  1. ^ A. J. Engler, A. Prestel, Valued fields, Springer monographs of mathematics, 2005, thm. 3.2.15, p. 69.
This page was last edited on 7 November 2023, at 08:48
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.