To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hamiltonian completion

From Wikipedia, the free encyclopedia

The Hamiltonian completion problem is to find the minimal number of edges to add to a graph to make it Hamiltonian.

The problem is clearly NP-hard in the general case (since its solution gives an answer to the NP-complete problem of determining whether a given graph has a Hamiltonian cycle). The associated decision problem of determining whether K edges can be added to a given graph to produce a Hamiltonian graph is NP-complete.

Moreover, Hamiltonian completion belongs to the APX complexity class, i.e., it is unlikely that efficient constant ratio approximation algorithms exist for this problem.[1]

The problem may be solved in polynomial time for certain classes of graphs, including series–parallel graphs[2] and their subgraphs,[3] which include outerplanar graphs, as well as for a line graph of a tree[4][5] or a cactus graph.[6]

Gamarnik et al. use a linear time algorithm for solving the problem on trees to study the asymptotic number of edges that must be added for sparse random graphs to make them Hamiltonian.[7]

YouTube Encyclopedic

  • 1/1
    Views:
    710
  • Коллоквиум. Upward Book Embeddings of st-Graphs | Tamara Mchedlidze | Лекториум

Transcription

References

  1. ^ Wu, Q. S.; Lu, Chin Lung; Lee, Richard C. T. (2000), "An approximate algorithm for the weighted Hamiltonian path completion problem on a tree", in Lee, D. T.; Teng, Shang-Hua (eds.), Algorithms and Computation, 11th International Conference, ISAAC 2000, Taipei, Taiwan, December 18–20, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1969, Springer, pp. 156–167, doi:10.1007/3-540-40996-3_14
  2. ^ Takamizawa, K.; Nishizeki, T.; Saito, N. (1982), "Linear-time computability of combinatorial problems on series–parallel graphs", Journal of the ACM, 29 (3): 623–641, doi:10.1145/322326.322328, S2CID 16082154.
  3. ^ Korneyenko, N. M. (1994), "Combinatorial algorithms on a class of graphs", Discrete Applied Mathematics, 54 (2–3): 215–217, doi:10.1016/0166-218X(94)90022-1, MR 1300246
  4. ^ Raychaudhuri, Arundhati (1995), "The total interval number of a tree and the Hamiltonian completion number of its line graph", Information Processing Letters, 56 (6): 299–306, doi:10.1016/0020-0190(95)00163-8, MR 1366337
  5. ^ Agnetis, A.; Detti, P.; Meloni, C.; Pacciarelli, D. (2001), "A linear algorithm for the Hamiltonian completion number of the line graph of a tree", Information Processing Letters, 79 (1): 17–24, doi:10.1016/S0020-0190(00)00164-2, MR 1832044
  6. ^ Detti, Paolo; Meloni, Carlo (2004), "A linear algorithm for the Hamiltonian completion number of the line graph of a cactus", Discrete Applied Mathematics, 136 (2–3): 197–215, doi:10.1016/S0166-218X(03)00441-4, MR 2045212
  7. ^ Gamarnik, David; Sviridenko, Maxim (2005), "Hamiltonian completions of sparse random graphs" (PDF), Discrete Applied Mathematics, 152 (1–3): 139–158, doi:10.1016/j.dam.2005.05.001, MR 2174199
This page was last edited on 12 February 2024, at 03:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.