To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Guyou hemisphere-in-a-square projection

From Wikipedia, the free encyclopedia

Guyou doubly periodic projection of the world.
The Guyou hemisphere-in-a-square projection with Tissot's indicatrix of deformation. The indicatrix is omitted at the singular points. At those points the deformation is infinite; the indicatrix would be infinite in size.

The Guyou hemisphere-in-a-square projection is a conformal map projection for the hemisphere. It is an oblique aspect of the Peirce quincuncial projection.

History

The projection was developed by Émile Guyou [fr] of France in 1887.[1][2]

Formal description

The projection can be computed as an oblique aspect of the Peirce quincuncial projection by rotating the axis 45 degrees. It can also be computed by rotating the coordinates −45 degrees before computing the stereographic projection; this projection is then remapped into a square whose coordinates are then rotated 45 degrees.[3]

The projection is conformal except for the four corners of each hemisphere's square. Like other conformal polygonal projections, the Guyou is a Schwarz–Christoffel mapping.

Properties

Its properties are very similar to those of the Peirce quincuncial projection:

  • Each hemisphere is represented as a square, the sphere as a rectangle of aspect ratio 2:1.
  • The part where the exaggeration of scale amounts to double that at the centre of each square is only 9% of the area of the sphere, against 13% for the Mercator and 50% for the stereographic[4]
  • The curvature of lines representing great circles is, in every case, very slight, over the greater part of their length.[4]
  • It is conformal everywhere except at the corners of the square that corresponds to each hemisphere, where two meridians change direction abruptly twice each; the Equator is represented by a horizontal line.
  • It can be tessellated in all directions.

Related projections

See also

References

  1. ^ E. Guyou (1887) "Nouveau système de projection de la sphère: Généralisation de la projection de Mercator", Annales Hydrographiques, Ser. 2, Vol. 9, 16–35. https://www.retronews.fr/journal/annales-hydrographiques/1-janvier-1887/1877/4868382/23
  2. ^ Snyder, John P. (1993). Flattening the Earth. University of Chicago. ISBN 0-226-76746-9.
  3. ^ L.P. Lee (1976). "Conformal Projections based on Elliptic Functions". Cartographica. 13 (Monograph 16, supplement No. 1 to Canadian Cartographer).
  4. ^ a b C.S. Peirce (December 1879). "A Quincuncial Projection of the Sphere". American Journal of Mathematics. The Johns Hopkins University Press. 2 (4): 394–396. doi:10.2307/2369491. JSTOR 2369491.
This page was last edited on 5 February 2024, at 05:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.