To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Graphite-moderated reactor

From Wikipedia, the free encyclopedia

Diagram of a nuclear reactor using graphite as a moderator
"Graphite reactor" directs here. For the graphite reactor at Oak Ridge National Laboratory, see X-10 Graphite Reactor.

A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium to be used as nuclear fuel.

The first artificial nuclear reactor, the Chicago Pile-1, used nuclear graphite as a moderator. Graphite-moderated reactors were involved in two of the best-known nuclear disasters: an untested graphite annealing process contributed to the Windscale fire (but the graphite itself did not catch fire), while a graphite fire during the Chernobyl disaster contributed to the spread of radioactive material.

YouTube Encyclopedic

  • 1/5
    Views:
    50 220
    1 480
    2 346
    19 532
    3 976 724
  • Understanding graphite cores in nuclear reactors
  • Hallam Nuclear Power Facility - the Sodium Graphite Reactor in Nebraska (1963)
  • Reactors, Fuels & Associated Subjects: Graphite Moderated - Allen Croff
  • Recipe for Success
  • Nuclear Reactor - Understanding how it works | Physics Elearnin

Transcription

Types

Several types of graphite-moderated nuclear reactors have been used in commercial electricity generation:

Research reactors

There have been a number of research or test reactors built that use graphite as the moderator.

History

S.R. Sapirie, Senator Albert Gore Sr, Senator Lyndon Johnson and Dr. John Swartout looking at a model of a graphite reactor at Oak Ridge National Lab, on October 19, 1958.

The first artificial nuclear reactor, Chicago Pile-1, a graphite-moderated device that produced between 0.5 watts and 200 watts , was constructed by a team led by Enrico Fermi in 1942. The construction and testing of this reactor (an "atomic pile") was part of the Manhattan Project. This work led to the construction of the X-10 Graphite Reactor at Oak Ridge National Laboratory, which was the first nuclear reactor designed and built for continuous operation, and began operation in 1943.

Accidents

There have been several major accidents in graphite-moderated reactors, with the Windscale fire and the Chernobyl disaster probably the best known.

In the Windscale fire, an untested annealing process for the graphite was used, and that contributed to the accident – however it was the uranium fuel rather than the graphite in the reactor that caught fire. The only graphite moderator damage was found to be localized around burning fuel elements.[1][2]

In the Chernobyl disaster, the graphite was a contributing factor to the cause of the accident. Due to overheating from lack of adequate cooling, the fuel rods began to deteriorate. After the SCRAM (AZ5) button was pressed to shut down the reactor, the control rods jammed in the middle of the core, causing a positive loop, since the nuclear fuel reacted to graphite. This has been dubbed the "final trigger" of events before the rupture. A graphite fire after the main event contributed to the spread of radioactive material. The massive power excursion in Chernobyl during a mishandled test led to the rupture of the reactor vessel and a series of steam explosions, which destroyed the reactor building. Now exposed to both air and the heat from the reactor core, the graphite moderator in the reactor core caught fire, and this fire sent a plume of highly radioactive fallout into the atmosphere and over an extensive geographical area.[3]

In addition, the French Saint-Laurent Nuclear Power Plant and the Spanish Vandellòs Nuclear Power Plant – both UNGG graphite-moderated natural uranium reactors – suffered major accidents. Particularly noteworthy is a partial core meltdown on 17 October 1969 and a heat excursion during graphite annealing on 13 March 1980 in Saint-Laurent, which were both classified as INES 4. The Vandellòs NPP was damaged on 19 October 1989, and a repair was considered uneconomical.

References

  1. ^ "Meeting of RG2 with Windscale Pile 1 Decommissioning Project Team" (PDF). Nuclear Safety Advisory Committee. 2005-09-29. NuSAC(2005)P 18. Archived from the original (PDF) on 2020-10-19. Retrieved 2008-11-26.
  2. ^ Marsden, B.J.; Preston, S.D.; Wickham, A.J. (8–10 September 1997). "Evaluation of graphite safety issues for the British production piles at Windscale". AEA Technology. IAEA. IAEA-TECDOC—1043. Retrieved 13 November 2010.
  3. ^ "Frequently Asked Chernobyl Questions". International Atomic Energy Agency – Division of Public Information. May 2005. Archived from the original on 23 February 2011. Retrieved 23 March 2011.
This page was last edited on 15 November 2023, at 23:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.