To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Gauss–Bonnet gravity

From Wikipedia, the free encyclopedia

In general relativity, Gauss–Bonnet gravity, also referred to as Einstein–Gauss–Bonnet gravity,[1] is a modification of the Einstein–Hilbert action to include the Gauss–Bonnet term[2] (named after Carl Friedrich Gauss and Pierre Ossian Bonnet)

,

where

.

This term is only nontrivial in 4+1D or greater, and as such, only applies to extra dimensional models. In 3+1D, it reduces to a topological surface term. This follows from the generalized Gauss–Bonnet theorem on a 4D manifold

.

In lower dimensions, it identically vanishes.

Despite being quadratic in the Riemann tensor (and Ricci tensor), terms containing more than 2 partial derivatives of the metric cancel out, making the Euler–Lagrange equations second order quasilinear partial differential equations in the metric. Consequently, there are no additional dynamical degrees of freedom, as in say f(R) gravity.

Gauss–Bonnet gravity has also been shown to be connected to classical electrodynamics by means of complete gauge invariance with respect to Noether's theorem.[3]

More generally, we may consider a

term for some function f. Nonlinearities in f render this coupling nontrivial even in 3+1D. Therefore, fourth order terms reappear with the nonlinearities.

YouTube Encyclopedic

  • 1/3
    Views:
    1 095
    949
    499
  • Paving the Way with Gauss-Bonnet: An Introduction to Curvature and Topology
  • Advanced Calculus: overview of Gauss Bonnet Theorem, 12-11-17 part 2
  • Differential Geometry: Gauss Bonnet Theorem, Euler Characteristic, 4-21-21 part 4

Transcription

See also

References

  1. ^ Lovelock, David (1971), "The Einstein tensor and its generalizations", J. Math. Phys., 12 (3): 498–501, Bibcode:1971JMP....12..498L, doi:10.1063/1.1665613
  2. ^ Roos, Matts (2015). Introduction to Cosmology (4th ed.). Wiley. p. 248.
  3. ^ Baker, Mark Robert; Kuzmin, Sergei (2019), "A connection between linearized Gauss–Bonnet gravity and classical electrodynamics", Int. J. Mod. Phys. D, 28 (7): 1950092–22, arXiv:1811.00394, Bibcode:2019IJMPD..2850092B, doi:10.1142/S0218271819500925


This page was last edited on 13 August 2023, at 18:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.