To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Fuzzy mathematics

From Wikipedia, the free encyclopedia

Fuzzy mathematics is the branch of mathematics including fuzzy set theory and fuzzy logic that deals with partial inclusion of elements in a set on a spectrum, as opposed to simple binary "yes" or "no" (0 or 1) inclusion. It started in 1965 after the publication of Lotfi Asker Zadeh's seminal work Fuzzy sets.[1] Linguistics is an example of a field that utilizes fuzzy set theory.

YouTube Encyclopedic

  • 1/2
    Views:
    7 733
    348
  • NBC News Reports on Fuzzy Math
  • Dipa Ghosh, Asst. Professor, Inspiria Knowledge Campus

Transcription

Definition

A fuzzy subset A of a set X is a function A: XL, where L is the interval [0, 1]. This function is also called a membership function. A membership function is a generalization of an indicator function (also called a characteristic function) of a subset defined for L = {0, 1}. More generally, one can use any complete lattice L in a definition of a fuzzy subset A.[2]

Fuzzification

The evolution of the fuzzification of mathematical concepts can be broken down into three stages:[3]

  1. straightforward fuzzification during the sixties and seventies,
  2. the explosion of the possible choices in the generalization process during the eighties,
  3. the standardization, axiomatization, and L-fuzzification in the nineties.

Usually, a fuzzification of mathematical concepts is based on a generalization of these concepts from characteristic functions to membership functions. Let A and B be two fuzzy subsets of X. The intersection A ∩ B and union A ∪ B are defined as follows: (A ∩ B)(x) = min(A(x), B(x)), (A ∪ B)(x) = max(A(x), B(x)) for all x in X. Instead of min and max one can use t-norm and t-conorm, respectively;[4] for example, min(a, b) can be replaced by multiplication ab. A straightforward fuzzification is usually based on min and max operations because in this case more properties of traditional mathematics can be extended to the fuzzy case.

An important generalization principle used in fuzzification of algebraic operations is a closure property. Let * be a binary operation on X. The closure property for a fuzzy subset A of X is that for all x, y in X, A(x*y) ≥ min(A(x), A(y)). Let (G, *) be a group and A a fuzzy subset of G. Then A is a fuzzy subgroup of G if for all x, y in G, A(x*y−1) ≥ min(A(x), A(y−1)).

A similar generalization principle is used, for example, for fuzzification of the transitivity property. Let R be a fuzzy relation on X, i.e. R is a fuzzy subset of X × X. Then R is (fuzzy-)transitive if for all x, y, z in X, R(x, z) ≥ min(R(x, y), R(y, z)).

Fuzzy analogues

Fuzzy subgroupoids and fuzzy subgroups were introduced in 1971 by A. Rosenfeld.[5][6][7]

Analogues of other mathematical subjects have been translated to fuzzy mathematics, such as fuzzy field theory and fuzzy Galois theory,[8] fuzzy topology,[9][10] fuzzy geometry,[11][12][13][14] fuzzy orderings,[15] and fuzzy graphs.[16][17][18]

See also

References

  1. ^ Zadeh, L. A. (1965) "Fuzzy sets", Information and Control, 8, 338–353.
  2. ^ Goguen, J. (1967) "L-fuzzy sets", J. Math. Anal. Appl., 18, 145-174.
  3. ^ Kerre, E.E., Mordeson, J.N. (2005) "A historical overview of fuzzy mathematics", New Mathematics and Natural Computation, 1, 1-26.
  4. ^ Klement, E.P., Mesiar, R., Pap, E. (2000) Triangular Norms. Dordrecht, Kluwer.
  5. ^ Rosenfeld, A. (1971) "Fuzzy groups", J. Math. Anal. Appl., 35, 512-517.
  6. ^ Mordeson, J.N., Malik, D.S., Kuroli, N. (2003) Fuzzy Semigroups. Studies in Fuzziness and Soft Computing, vol. 131, Springer-Verlag
  7. ^ Mordeson, J.N., Bhutani, K.R., Rosenfeld, A. (2005) Fuzzy Group Theory. Studies in Fuzziness and Soft Computing, vol. 182. Springer-Verlag.
  8. ^ Mordeson, J.N., Malik, D.S (1998) Fuzzy Commutative Algebra. World Scientific.
  9. ^ Chang, C.L. (1968) "Fuzzy topological spaces", J. Math. Anal. Appl., 24, 182—190.
  10. ^ Liu, Y.-M., Luo, M.-K. (1997) Fuzzy Topology. Advances in Fuzzy Systems - Applications and Theory, vol. 9, World Scientific, Singapore.
  11. ^ Poston, Tim, "Fuzzy Geometry".
  12. ^ Buckley, J.J., Eslami, E. (1997) "Fuzzy plane geometry I: Points and lines". Fuzzy Sets and Systems, 86, 179-187.
  13. ^ Ghosh, D., Chakraborty, D. (2012) "Analytical fuzzy plane geometry I". Fuzzy Sets and Systems, 209, 66-83.
  14. ^ Chakraborty, D. and Ghosh, D. (2014) "Analytical fuzzy plane geometry II". Fuzzy Sets and Systems, 243, 84–109.
  15. ^ Zadeh L.A. (1971) "Similarity relations and fuzzy orderings". Inform. Sci., 3, 177–200.
  16. ^ Kaufmann, A. (1973). Introduction a la théorie des sous-ensembles flows. Paris. Masson.
  17. ^ A. Rosenfeld, A. (1975) "Fuzzy graphs". In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.), Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, New York, ISBN 978-0-12-775260-0, pp. 77–95.
  18. ^ Yeh, R.T., Bang, S.Y. (1975) "Fuzzy graphs, fuzzy relations and their applications to cluster analysis". In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.), Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, New York, ISBN 978-0-12-775260-0, pp. 125–149.

External links

This page was last edited on 15 May 2024, at 11:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.