To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Frequency scaling

From Wikipedia, the free encyclopedia

In computer architecture, frequency scaling (also known as frequency ramping) is the technique of increasing a processor's frequency so as to enhance the performance of the system containing the processor in question. Frequency ramping was the dominant force in commodity processor performance increases from the mid-1980s until roughly the end of 2004.

The effect of processor frequency on computer speed can be seen by looking at the equation for computer program runtime:

where instructions per program is the total instructions being executed in a given program, cycles per instruction is a program-dependent, architecture-dependent average value, and time per cycle is by definition the inverse of processor frequency.[1] An increase in frequency thus decreases runtime.

However, power consumption in a chip is given by the equation

where P is power consumption, C is the capacitance being switched per clock cycle, V is voltage, and F is the processor frequency (cycles per second).[2] Increases in frequency thus increase the amount of power used in a processor. Increasing processor power consumption led ultimately to Intel's May 2004 cancellation of its Tejas and Jayhawk processors, which is generally cited as the end of frequency scaling as the dominant computer architecture paradigm.[3]

Moore's Law was[4] still in effect when frequency scaling ended. Despite power issues, transistor densities were still doubling every 18 to 24 months. With the end of frequency scaling, new transistors (which are no longer needed to facilitate frequency scaling) are used to add extra hardware, such as additional cores, to facilitate parallel computing - a technique that is being referred to as parallel scaling.

The end of frequency scaling as the dominant cause of processor performance gains has caused an industry-wide shift to parallel computing in the form of multicore processors.

YouTube Encyclopedic

  • 1/3
    Views:
    534
    14 701
    10 721
  • 202 34 Magnitude Frequency Scaling
  • Butterworth Filter - 03 - Frequency Scaling
  • How to Change your cpu frequency in linux

Transcription

See also

References

  1. ^ John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. 3rd edition, 2002. Morgan Kaufmann, ISBN 1-55860-724-2. Page 43.
  2. ^ J. M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996.
  3. ^ Laurie J. Flynn. Intel Halts Development of 2 New Microprocessors. New York Times, May 8, 2004.
  4. ^ "Moore's law really is dead this time". 11 February 2016.
This page was last edited on 25 March 2023, at 04:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.