To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Ferrochrome alloy

Ferrochrome or ferrochromium (FeCr) is a type of ferroalloy, that is, an alloy of chromium and iron, generally containing 50 to 70% chromium by weight.[1][2][3]

Ferrochrome is produced by electric arc carbothermic reduction of chromite. Most of the global output is produced in South Africa, Kazakhstan and India, which have large domestic chromite resources. Increasing amounts are coming from Russia and China. Production of steel, especially that of stainless steel with chromium content of 10 to 20%, is the largest consumer and the main application of ferrochrome.

YouTube Encyclopedic

  • 1/1
    Views:
    1 019
  • 8 - 9701_w14_qp_13 : Moles and Solutions

Transcription

Usage

Over 80% of the world's ferrochrome is utilised in the production of stainless steel. In 2006, 28,000,000 tons of stainless steel were produced.[4][5] Stainless steel depends on chromium for its appearance and resistance to corrosion. Average chrome content in stainless steel is approx. 18%. It is also used to add chromium to carbon steel. FeCr from South Africa, known as "charge chrome" and produced from a Cr containing ore with a low carbon content, is most commonly used in stainless steel production. Alternatively, high carbon FeCr produced from high-grade ore found in Kazakhstan (among other places) is more commonly used in specialist applications such as engineering steels where a high Cr/Fe ratio and minimum levels of other elements (sulfur, phosphorus, titanium etc.) are important and production of finished metals takes place in small electric arc furnaces compared to large scale blast furnaces.[citation needed] In the past, Ferrochrome alloys were used in the formulation of Type III Compact Cassettes.

Production

Ferrochrome production is essentially a carbothermic reduction operation taking place at high temperatures. Chromite (an oxide of Cr and Fe) is reduced by coal and coke to form the iron-chromium alloy. The heat for this reaction can come from several forms, but typically from the electric arc formed between the tips of electrodes in the bottom of the furnace and the furnace hearth. This arc creates temperatures of about 2,800 °C (5,070 °F). In the process of smelting, huge amounts of electricity are consumed, making production very expensive in countries where power costs are high.

Tapping of the material from the furnace takes place intermittently. When enough smelted ferrochrome has accumulated in the furnace hearth, the tap hole is drilled open and a stream of molten metal and slag rushes down a trough into a chill or ladle. Ferrochrome solidifies in large castings which are crushed for sale or further processed.

Ferrochrome is generally classified by the amount of carbon and chrome it contains. The vast majority of FeCr produced is "charge chrome" from South Africa, with high carbon being the second largest segment followed by the smaller sectors of low carbon and intermediate carbon material.

Trading

In March 2021, the Shanghai Futures Exchange decided that it would list ferrochrome futures at some unknown date. At the time, ferrochrome spot 6–8% C, basis 50% Cr, ddp China was trading at $1,336–1,382. In January 2021 the spot price had been 25% lower.[6]

References

  1. ^ "ASTM A482".
  2. ^ "Ferrochromium -- Specification and conditions of delivery - ISO 5448:1981".
  3. ^ "Ferrochrome MSDS" (PDF).
  4. ^ Jorgenson, John D.; Corathers, Lisa A.; Gambogi, Joseph; Kuck, Peter H.; Magyar, Michael J.; Papp, John F.; Shedd; Kim B. "Mineral Yearbook 2006: Ferroalloys" (PDF). United States Geological Survey. Retrieved 2009-02-27.
  5. ^ Lisa A. Corathers; Joseph Gambogi; Peter H. Kuck; John F. Papp; Désirée E. Polyak; Kim B. Shedd. "Mineral Yearbook 2009: Ferroalloys" (PDF). United States Geological Survey. Retrieved 2011-11-22.
  6. ^ Stibbs, Jon; Liu, Siyi (23 March 2021). "COMMENT: Could China's ferro-chrome futures be a game-changer?". Euromoney Institutional Investor. Fastmarkets.
This page was last edited on 23 May 2024, at 17:21
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.