To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Ferranti Pegasus

From Wikipedia, the free encyclopedia

A typical Pegasus computer installation, on view at the Science Museum, London

Pegasus was an early British vacuum-tube (valve) computer built by Ferranti, Ltd that pioneered design features to make life easier for both engineers and programmers.[1][2][3] Originally it was named the Ferranti Package Computer as its hardware design followed that of the Elliott 401 with modular plug-in packages.[4] Much of the development was the product of three men: W. S. (Bill) Elliott (hardware); Christopher Strachey (software) and Bernard Swann (marketing and customer support).[5] It was Ferranti's most popular valve computer[6] with 38 being sold. The first Pegasus was delivered in 1956[7] and the last was delivered in 1959. Ferranti received funding for the development from the National Research Development Corporation (NRDC).[8]

At least two Pegasus machines survive, one in The Science Museum, London and one which was displayed in the Science and Industry Museum, Manchester but which has now been removed to the storage in the Science Museum archives at Wroughton. The Pegasus in The Science Museum, London ran its first program in December 1959 and was regularly demonstrated until 2009 when it developed a severe electrical fault.[9][10] In early 2014, the Science Museum decided to retire it permanently,[11] effectively ending the life of one of the world's oldest working computers. The Pegasus officially held the title of the world's oldest computer until 2012, when the restoration of the Harwell computer was completed at the National Museum of Computing.

YouTube Encyclopedic

  • 1/3
    Views:
    41 177
    2 704
    754
  • Ferranti Atlas: Britain's first supercomputer
  • 84 years old Ferranti FDb kWh meter
  • John Steele - Ferranti and the Argus 100 Computer

Transcription

An Atlas at Manchester Using thousands of circuit packages like this the world's fastest and most powerful computer takes shape Built at the Manchester computer factory of Ferranti Limited and destined for the computing machine laboratory of Manchester University. Normally one sees an increase of perhaps 10-fold in the power of each generation of computers The difference the Atlas brought was more like a 100-fold. Suddenly that same program that ran for hours could run in minutes. All this activity was happening more or less without human intervention. When we come to Atlas, Tom Kilburn was the key man He had come to Manchester He had come to Manchester as an experienced engineer if you like from the government research establishment My role has been quite simple, and that's been to look at the last computers, see what was wrong with them and build the next one. There's a progression of computers that leads right up to Atlas and most of them in this progression were designed as university prototypes that were then taken and marketed in designed as university prototypes that were then taken and marketed in production form by the company Ferranti Limited. The Ferranti Mark 1 was the first commercial machine to be produced first commercial machine to be produced Their aim was to be first into the future and if you're first into the future you're taking a risk. Finished packages of many types all using transistors instead of valves are the building bricks from which much of Atlas is made up. The nuclear energy people were demanding more computing power for strategic purposes. It was just about the time that we decided to build what we called Muse. And so Tom Kilburn talked with both Sir Vincent Ferranti and Sebastian Ferranti and they agreed to build a machine based on Muse and they decided to call it Atlas. Here we had a small group of dedicated people coming up with some key inventions in the face of significant difficulties problems in the early days were that all the individual components had to be assembled by hand On Atlas at London it took us six months to get it recommissioned from the shop floor at Manchester. To put a machine like that all together check it out and get it working is a very considerable time. We didn't think that working long shifts was anything that mattered at all, we just worked. The longest I ever worked was twenty six hours and then I nearly forgot to get off the train when i got home The factory at West Gorton had been a railway engine manufacturing place, so it was absolutely filthy with really hard soot This dirt got everywhere You just couldn't see the components, it was just a thick layer of greasy soot So one-third of our faults were due to dirt. We were constantly repairing the system and getting it working I do remember at the time in December 1962 when the Atlas was officially switched on. I received an official invitation, it was all set up and organised by Ferranti. I was a humble research student but I sensed that some big occasion was about to happen. When we had finished commissioning it we eventually got to a point where the machine would run for ten minutes without fail and at that point we all cheered and went to the pub to celebrate surviving ten minutes The Atlas was worth approximately two-and-a-half million quid which you're talking about fifty million quid in today's money. The whole nation would not be expected to install more than two or three of these machines So clearly time on the machines had to be shared. It was charged at about seven hundred and fifty pounds an hour to eight hundred pounds an hour When Atlas came along a lot of problems that were too difficult to be solved were able to be solved. Looking back over fifty years we can see two or three absolutely fundamental and seminal ideas of computers that first saw the light of day in Atlas. First of all virtual memory which is a way of organising storage that we see on every modern computer and secondly a multitasking operating system. Again we see that on every modern computer It still remained a memorable computer for a good twenty years after it had stopped being used. If you mentioned the word Atlas people said, oh Atlas It was still counted as something to have worked on I certainly feel very happy to have been I think a component as you were in the design of Atlas. That was a time when we felt that we were doing something that was a world-class. I think it's very important that all major steps of any technology be remembered because that's when something made a sudden change and changed everybody's lives since People thought that only one Atlas would be needed, ever and now your washing machine has a more powerful computer in it than Atlas

Design

In those days it was common for it to be unclear whether a failure was due to the hardware or the program. As a consequence, Christopher Strachey of NRDC, who was himself a brilliant programmer,[12] recommended the following design objectives:

  1. The necessity for optimum programming (favoured by Alan Turing) was to be minimised, "because it tended to become a time-wasting intellectual hobby of the programmers".
  2. The needs of the programmer were to be a governing factor in selecting the instruction set.
  3. It was to be cheap and reliable.

The first objective was only partially met: because both program and the data on which it was to operate had to be in the 128 words of primary storage contained in 8-word nickel delay lines. The rest of the memory was held on a 7936-word magnetic drum,[13] which rotated at 3750 rpm,[14] so it was often necessary to use ingenuity to reduce the number of transfers between the fast store and the drum.

The front panel of the Pegasus

Pegasus had eight accumulators, seven of which could also be used as index registers, the first computer to allow this dual use. Accumulators 6 and 7 were known as p and q and were involved in multiply and divide and some double-length shift instructions. Each word contained 39 bits plus 1 bit for parity checking. Two 19-bit instructions were packed into one word, with the extra bit that could be used to indicate a breakpoint (optional stop), to assist in debugging. In line with Strachey's second objective, it had a relatively generous instruction set for a computer of its time, but there was no explicit hardware provision for handling either characters or floating-point numbers.

The speed of arithmetic operations was about the same as in the Elliott 402 computer, which could add in 204 microseconds and multiply in 3366 microseconds. The Pegasus basic instruction cycle time for add/subtract/move and logical instructions was 128 microseconds. Multiply, divide, justify and shift instructions took a variable time to complete. Transfers to and from the drum were synchronous. The layout of blocks on the drum was interleaved to allow some processing between transfers to/from consecutive blocks. The computer was advertised as weighing 2,560 lb (1.2 t).[15]

To what extent Strachey's third objective was reached, depends on how one views a price of £50,000 for Pegasus 1, which did not have magnetic tape drives, line printer or punched card input and output. The modular design with plug-in units of hardware did, however, make it very reliable by the standards of the day, and maintenance was "a doddle of a job".[10] In its second year of use in 1958–9, the Pegasus at King's College (part of Durham University) in Newcastle upon Tyne had a typical reliability in excess of 98%, and 95.4% overall.[16]

Applications

A printout from a Pegasus computer

The initial version of Pegasus, Pegasus 1 was intended for scientific and engineering applications. Its input was via 5-hole paper tape with output on tape. The variant for business data processing was called Pegasus 2 and could be equipped with punched cards, magnetic tape and line printer.[17]

In 1956 the first Pegasus was used to calculate the stresses and strains in the tail plane of the Saunders-Roe SR.53;[citation needed] the results were used to check the manufacturers figures; the programmer was Anne Robson. Because of the importance of a computer, it was housed in the drawing room, complete with an Adam's ceiling, of Ferranti's London office in Portland Place.

A Pegasus 1 was installed at Cyber House, Sheffield by Stafford Beer for the use of United Steel. It was the first computer installed for management cybernetics.[18] The Pegasus at Southampton University was used for analysis of ground resonance data for the Saro P.531 helicopter, which eventually entered production as the Westland Scout and Westland Wasp.[19]

In 1957 a Pegasus computer was used to calculate 7480 digits of π, a record at the time. In 1959 Handley Page Ltd were advertising for experienced Pegasus programmers to join their aviation design team at Cricklewood, London [20]

The University of Leeds had a Pegasus computer, run by Sandy Douglas. This was used, among other things, for a project to process the University's matriculation records.[21]

Other people who worked on the Pegasus included Hugh McGregor Ross and Donald B. Gillies.

See also

References

  1. ^ Ferranti Computers 1953-64 (PDF), Museum of Science & Industry, 2011, archived from the original (PDF) on 2 October 2014, retrieved 15 November 2014.
  2. ^ Merry, Ian (Autumn 1993), "The design of Pegasus", Resurrection: The Bulletin of the Computer Conservation Society (7), ISSN 0958-7403.
  3. ^ Pegasus – a vintage British computer, University of Essex.
  4. ^ Lavington (1980), p. 79.
  5. ^ Ross (2012), p. 1.
  6. ^ Burton, Chris (18 November 2003), "Ferranti Pegasus, Perseus and Sirius: Delivery Lists and Applications" (PDF), CCS-F3X1 (4), retrieved 18 June 2022.
  7. ^ "COMPUTERS, OVERSEAS: 3. PEGASUS, Ferranti Limited, England". Digital Computer Newsletter. 8 (3): 11. Jul 1956.[dead link]
  8. ^ Lavington (1980), p. 102.
  9. ^ The Pegasus Incident and its Aftermath, retrieved February 23, 2018.
  10. ^ a b The Science Museum (2015).
  11. ^ Computer Conservation Society Projects list, retrieved June 8, 2014.
  12. ^ Berners-Lee (1969).
  13. ^ Felton (1962), p. 279.
  14. ^ Weik (1957), p. 112.
  15. ^ Weik (1957), p. 114.
  16. ^ Page, E. S. (1959). University Computing Laboratory – Report of the Director, 1958/59 (Report). University of Durham. p. 9. There have been two periods during which the performance has fallen well below its normal standard, but in spite of these, the average efficiency, measured by the ratio of good time to time available, has been 95.4 per cent. over the year, and exceeded 98 per cent. normally.
  17. ^ Felton (1962), p. 13.
  18. ^ Cabezas, Guido. "Stafford's Curriculum Vitae". Guido Cabezas Fuentealba. Universidad del BioBio. Retrieved 18 August 2015.
  19. ^ "1964 | 2166 | Flight Archive". Archived from the original on 2014-12-02.
  20. ^ "Handley Page Ltd advert" (PDF). Flight. 13 November 1959. Archived from the original (PDF) on 2016-08-18. Retrieved 2016-07-04.
  21. ^ P. F. Windley; L. R. Kay; A. Rowland-Jones (1960). "Data Processing in University Administration". The Computer Journal. 3 (1): 15–20. doi:10.1093/comjnl/3.1.15.

Bibliography

External links

This page was last edited on 16 December 2023, at 14:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.