To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Extended natural numbers

From Wikipedia, the free encyclopedia

In mathematics, the extended natural numbers is a set which contains the values and (infinity). That is, it is the result of adding a maximum element to the natural numbers. Addition and multiplication work as normal for finite values, and are extended by the rules (), and for .

With addition and multiplication, is a semiring but not a ring, as lacks an additive inverse.[1] The set can be denoted by , or .[2][3][4] It is a subset of the extended real number line, which extends the real numbers by adding and .[2]

Applications

In graph theory, the extended natural numbers are used to define distances in graphs, with being the distance between two unconnected vertices.[2] They can be used to show the extension of some results, such as the max-flow min-cut theorem, to infinite graphs.[5]

In topology, the topos of right actions on the extended natural numbers is a category PRO of projection algebras.[4]

In constructive mathematics, the extended natural numbers are a one-point compactification of the natural numbers, yielding the set of non-increasing binary sequences i.e. such that . The sequence represents , while the sequence represents . It is a retract of and the claim that implies the limited principle of omniscience.[3]

Notes

References

  • Folkman, Jon; Fulkerson, D.R. (1970). "Flows in Infinite Graphs". Journal of Combinatorial Theory. 8 (1). doi:10.1016/S0021-9800(70)80006-0.
  • Escardó, Martín H (2013). "Infinite Sets That Satisfy The Principle of Omniscience in Any Variety of Constructive Mathematics". Journal of Symbolic Logic. 78 (3).
  • Koch, Sebastian (2020). "Extended Natural Numbers and Counters" (PDF). Formalized Mathematics. 28 (3).
  • Khanjanzadeh, Zeinab; Madanshekaf, Ali (2018). "Weak Ideal Topology in the Topos of Right Acts Over a Monoid". Communications in Algebra. 46 (5).
  • Sakarovitch, Jacques (2009). Elements of automata theory. Translated from the French by Reuben Thomas. Cambridge: Cambridge University Press. ISBN 978-0-521-84425-3. Zbl 1188.68177.

Further reading

  • Robert, Leonel (3 September 2013). "The Cuntz semigroup of some spaces of dimension at most two". arXiv:0711.4396.
  • Lightstone, A. H. (1972). "Infinitesimals". The American Mathematical Monthly. 79 (3).
  • Khanjanzadeh, Zeinab; Madanshekaf, Ali (2019). "On Projection Algebras". Southeast Asian Bulletin of Mathematics. 43 (2).

External links

This page was last edited on 28 January 2023, at 18:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.