To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Explosion welding

From Wikipedia, the free encyclopedia

Explosion welding 1 Flyer (cladding). 2 Resolidified zone (needs to be minimised for welding of dissimilar materials). 3 Target (substrate). 4 Explosion. 5 Explosive powder. 6 Plasma jet.
Polished section of an explosion weld with typical wave-structure

Explosion welding (EXW) is a solid state (solid-phase) process where welding is accomplished by accelerating one of the components at extremely high velocity through the use of chemical explosives. This process is often used to clad carbon steel or aluminium plate with a thin layer of a harder or more corrosion-resistant material (e.g., stainless steel, nickel alloy, titanium, or zirconium). Due to the nature of this process, producible geometries are very limited. Typical geometries produced include plates, tubing and tube sheets.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    11 830
    59 236
    2 851
  • EXPLOSION WELDING PROCESS | How explosion welding process works (Animation)
  • The Process of Explosion Welding | Clad for Industrial Infrastructure
  • Explosive Welding

Transcription

Development

Unlike other forms of welding such as arc welding (which was developed in the late 19th century), explosion welding was developed relatively recently, in the decades after World War II. Its origins, however, go back to World War I, when it was observed that pieces of shrapnel sticking to armor plating were not only embedding themselves, but were actually being welded to the metal. Since the extreme heat involved in other forms of welding did not play a role, it was concluded that the phenomenon was caused by the explosive forces acting on the shrapnel. These results were later duplicated in laboratory tests and, not long afterwards, the process was patented and put to use.

In 1962, DuPont applied for a patent on the explosion welding process, which was granted on June 23, 1964, under US Patent 3,137,937[2] and resulted in the use of the Detaclad trademark to describe the process. On July 22, 1996, Dynamic Materials Corporation completed the acquisition of DuPont's Detaclad operations for a purchase price of $5,321,850 (or about $10.34 million today).

The response of inhomogeneous plates undergoing explosive welding was analytically modeled in 2011.[3]

Advantages and disadvantages

Explosion welding can produce a bond between two metals that cannot necessarily be welded by conventional means. The process does not melt either metal, instead plasticizing the surfaces of both metals, causing them to come into intimate contact sufficient to create a weld. This is a similar principle to other non-fusion welding techniques, such as friction welding. Large areas can be bonded extremely quickly and the weld itself is very clean, due to the fact that the surface material of both metals is violently expelled during the reaction.

Explosion welding can join a wide array of compatible and non-compatible metals, with more than 260 metal combinations possible.[4]

A disadvantage of this method is that extensive knowledge of explosives is needed before the procedure may be attempted safely. Regulations for the use of high explosives may require special licensing.[5]

See also

References

  1. ^ Lancaster, J.F. (1999). Metallurgy of welding (6th ed.). Abington, Cambridge: Abington Pub. ISBN 1-85573-428-1.
  2. ^ "Explosive bonding - United States Patent 3137937". FPO. Retrieved 12 December 2011.
  3. ^ Bisadi, H; Meybodi, M Khaleghi (November 2011). "Experimental, numerical, and theoretical analyses of simultaneous forming–welding of inhomogeneous plates". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 225 (11): 2552–2564. doi:10.1177/0954406211403667. ISSN 0954-4062.
  4. ^ "Process".
  5. ^ Health and safety executive. "Explosive licence costs in the UK". Archived from the original on 31 January 2023. Retrieved 25 December 2014.

Further reading

This page was last edited on 18 April 2024, at 04:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.