To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Dissimilatory sulfate reduction

From Wikipedia, the free encyclopedia

Overview of dissimilatory sulfate reduction performed by sulfate-reducing microorganisms.

Dissimilatory sulfate reduction is a form of anaerobic respiration that uses sulfate as the terminal electron acceptor to produce hydrogen sulfide. This metabolism is found in some types of bacteria and archaea which are often termed sulfate-reducing organisms. The term "dissimilatory" is used when hydrogen sulfide is produced in an anaerobic respiration process. By contrast, the term "assimilatory" would be used in relation to the biosynthesis of organosulfur compounds, even though hydrogen sulfide may be an intermediate.

Dissimilatory sulfate reduction occurs in four steps:[1]

  1. Conversion (activation) of sulfate to adenosine 5’-phosphosulfate (APS) via sulfate adenylyltransferase
  2. Reduction of APS to sulfite via adenylyl-sulfate reductase
  3. Transfer of the sulfur atom of sulfite to the DsrC protein creating a trisulfide intermediate catalyzed by DsrAB
  4. Reduction of the trisulfide to sulfide and reduced DsrC via a membrane bound enzyme, DsrMKJOP

Which requires the consumption of a single ATP molecule and the input of 8 electrons (e).[2][3]

The protein complexes responsible for these chemical conversions — Sat, Apr and Dsr — are found in all currently known organisms that perform dissimilatory sulfate reduction.[4] Energetically, sulfate is a poor electron acceptor for microorganisms as the sulfate-sulfite redox couple is E0' -516 mV, which is too negative to allow reduction by NADH or ferrodoxin that are the primary intracellular electron mediators.[5] To overcome this issue, sulfate is first converted into APS by the enzyme ATP sulfurylase (Sat), at the cost of a single ATP molecule. The APS-sulfite redox couple has a E0' of -60 mV, which allows APS to be reduced by either NADH or reduced ferrodoxin using the enzyme adenylyl-sulfate reductase (Apr), which requires the input of 2 electrons.[5] In the final step, sulfite is reduced by the dissimilatory sulfite reductase (Dsr) to form sulfide, requiring the input of 6 electrons.[3]

YouTube Encyclopedic

  • 1/2
    Views:
    10 140
    14 660
  • Electron flow in sulfur chemolithotrophic bacteria
  • Sulfur cycle

Transcription

See also

References

  1. ^ Santos, AA; Venceslau, SS; Grein, F; Leavitt, WD; Dahl, C; Johnston, DT; Pereira, IA (18 December 2015). "A protein trisulfide couples dissimilatory sulfate reduction to energy conservation". Science. 350 (6267): 1541–5. Bibcode:2015Sci...350.1541S. doi:10.1126/science.aad3558. PMID 26680199. S2CID 206643054.
  2. ^ Barton, Larry L.; Fardeau, Marie-Laure; Fauque, Guy D. (2014). "Chapter 10. Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation". In Peter M.H. Kroneck and Martha E. Sosa Torres (ed.). The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. Vol. 14. Springer. pp. 237–277. doi:10.1007/978-94-017-9269-1_10. PMID 25416397.
  3. ^ a b Grein F, Ramos AR, Venceslau SS, Pereira IA (February 2013). "Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism". Biochim. Biophys. Acta. 1827 (2): 145–60. doi:10.1016/j.bbabio.2012.09.001. PMID 22982583.
  4. ^ Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS (2011). "A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea". Front Microbiol. 2: 69. doi:10.3389/fmicb.2011.00069. PMC 3119410. PMID 21747791.
  5. ^ a b Muyzer G, Stams AJ (June 2008). "The ecology and biotechnology of sulphate-reducing bacteria". Nat. Rev. Microbiol. 6 (6): 441–54. doi:10.1038/nrmicro1892. PMID 18461075. S2CID 22775967.
This page was last edited on 5 March 2024, at 12:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.