To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Degree (graph theory)

From Wikipedia, the free encyclopedia

A graph with a loop having vertices labeled by degree

In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge.[1] The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees. The minimum degree of a graph is denoted by , and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

In a regular graph, every vertex has the same degree, and so we can speak of the degree of the graph. A complete graph (denoted , where is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, .

In a signed graph, the number of positive edges connected to the vertex is called positive deg and the number of connected negative edges is entitled negative deg.[2][3]

YouTube Encyclopedic

  • 1/5
    Views:
    12 694
    62 850
    4 548
    14 952
    46 635
  • Degree of Vertices | Definition, Theorem & Example | Graph Theory
  • Degree of a vertex in Graph | Graph Theory #6
  • What is the Degree of a Vertex? | Graph Theory
  • Graph - Degree Of A Vertex
  • [Discrete Mathematics] Vertex Degree and Regular Graphs

Transcription

Handshaking lemma

The degree sum formula states that, given a graph ,

.

The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group of people, the number of people who have shaken hands with an odd number of other people from the group is even.[4]

Degree sequence

Two non-isomorphic graphs with the same degree sequence (3, 2, 2, 2, 2, 1, 1, 1).

The degree sequence of an undirected graph is the non-increasing sequence of its vertex degrees;[5] for the above graph it is (5, 3, 3, 2, 2, 1, 0). The degree sequence is a graph invariant, so isomorphic graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a graph; in some cases, non-isomorphic graphs have the same degree sequence.

The degree sequence problem is the problem of finding some or all graphs with the degree sequence being a given non-increasing sequence of positive integers. (Trailing zeroes may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the graph.) A sequence which is the degree sequence of some graph, i.e. for which the degree sequence problem has a solution, is called a graphic or graphical sequence. As a consequence of the degree sum formula, any sequence with an odd sum, such as (3, 3, 1), cannot be realized as the degree sequence of a graph. The inverse is also true: if a sequence has an even sum, it is the degree sequence of a multigraph. The construction of such a graph is straightforward: connect vertices with odd degrees in pairs (forming a matching), and fill out the remaining even degree counts by self-loops. The question of whether a given degree sequence can be realized by a simple graph is more challenging. This problem is also called graph realization problem and can be solved by either the Erdős–Gallai theorem or the Havel–Hakimi algorithm. The problem of finding or estimating the number of graphs with a given degree sequence is a problem from the field of graph enumeration.

More generally, the degree sequence of a hypergraph is the non-increasing sequence of its vertex degrees. A sequence is -graphic if it is the degree sequence of some -uniform hypergraph. In particular, a -graphic sequence is graphic. Deciding if a given sequence is -graphic is doable in polynomial time for via the Erdős–Gallai theorem but is NP-complete for all .[6]

Special values

An undirected graph with leaf nodes 4, 5, 6, 7, 10, 11, and 12
  • A vertex with degree 0 is called an isolated vertex.
  • A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures.
  • A vertex with degree n − 1 in a graph on n vertices is called a dominating vertex.

Global properties

See also

Notes

  1. ^ Diestel, Reinhard (2005). Graph Theory (3rd ed.). Berlin, New York: Springer-Verlag. pp. 5, 28. ISBN 978-3-540-26183-4.
  2. ^ Ciotti, Valerio; Bianconi, Giestra; Capocci, Andrea; Colaiori, Francesca; Panzarasa, Pietro (2015). "Degree correlations in signed social networks". Physica A: Statistical Mechanics and Its Applications. 422: 25–39. arXiv:1412.1024. Bibcode:2015PhyA..422...25C. doi:10.1016/j.physa.2014.11.062. S2CID 4995458. Archived from the original on 2021-10-02. Retrieved 2021-02-10.
  3. ^ Saberi, Majerid; Khosrowabadi, Reza; Khatibi, Ali; Misic, Bratislav; Jafari, Gholamreza (January 2021). "Topological impact of negative links on the stability of resting-state brain network". Scientific Reports. 11 (1): 2176. Bibcode:2021NatSR..11.2176S. doi:10.1038/s41598-021-81767-7. PMC 7838299. PMID 33500525.
  4. ^ Grossman, Peter (2009). Discrete Mathematics for Computing. Bloomsbury. p. 185. ISBN 978-0-230-21611-2.
  5. ^ Diestel (2005), p. 216.
  6. ^ Deza, Antoine; Levin, Asaf; Meesum, Syed M.; Onn, Shmuel (January 2018). "Optimization over Degree Sequences". SIAM Journal on Discrete Mathematics. 32 (3): 2067–2079. arXiv:1706.03951. doi:10.1137/17M1134482. ISSN 0895-4801. S2CID 52039639.

References

This page was last edited on 29 February 2024, at 05:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.