To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

De sphaera mundi

From Wikipedia, the free encyclopedia

A volvelle from a sixteenth-century edition of Sacrobosco's De Sphaera

De sphaera mundi (Latin title meaning On the Sphere of the World, sometimes rendered The Sphere of the Cosmos; the Latin title is also given as Tractatus de sphaera, Textus de sphaera, or simply De sphaera) is a medieval introduction to the basic elements of astronomy written by Johannes de Sacrobosco (John of Holywood) c. 1230. Based heavily on Ptolemy's Almagest, and drawing additional ideas from Islamic astronomy, it was one of the most influential works of pre-Copernican astronomy in Europe.

YouTube Encyclopedic

  • 1/2
    Views:
    748
    1 120
  • Educação Patrimonial - Projecto da SPHAERA MUNDI
  • Sacrobosco's Sphaera 1547.mov

Transcription

Reception

Sacrobosco's De sphaera mundi was the most successful of several competing thirteenth-century textbooks on this topic. It was used in universities for hundreds of years and the manuscript copied many times before the invention of the printing press; hundreds of manuscript copies have survived. The first printed edition appeared in 1472 in Ferrara, and at least 84 editions were printed in the next two hundred years. The work was frequently supplemented with commentaries on the original text. The number of copies and commentaries reflects its importance as a university text.[1]

Content

The 'sphere of the world' is not the earth but the heavens, and Sacrobosco quotes Theodosius saying it is a solid body. It is divided into nine parts: the "first moved" (primum mobile), the sphere of the fixed stars (the firmament), and the seven planets, Saturn, Jupiter, Mars, the sun, Venus, Mercury and the moon. There is a 'right' sphere and an oblique sphere: the right sphere is only observed by those at the equator (if there are such people), everyone else sees the oblique sphere. There are two movements: one of the heavens from east to west on its axis through the Arctic and Antarctic poles, the other of the inferior spheres at 23° in the opposite direction on their own axes.[citation needed]

The world, or universe, is divided into two parts: the elementary and the ethereal. The elementary consists of four parts: the earth, about which is water, then air, then fire, reaching up to the moon. Above this is the ethereal which is immutable and called the 'fifth essence' by the philosophers. All are mobile except heavy earth which is the center of the world.[citation needed]

The universe as a machine

Sacrobosco spoke of the universe as the machina mundi, the machine of the world, suggesting that the reported eclipse of the Sun at the crucifixion of Jesus was a disturbance of the order of that machine. This concept is similar to the clockwork universe analogy that became very popular centuries later, during the Enlightenment.[2]: 465

Spherical Earth

Picture from a 1550 edition of De sphaera, showing how the curvature of the Earth makes the mast of an approaching ship appear first

Though principally about the universe, De sphaera 1230 A.D. contains a clear description of the Earth as a sphere which agrees with widespread opinion in Europe during the higher Middle Ages, in contrast to statements of some 19th- and 20th-century historians that medieval scholars thought the Earth was flat.[3]: 19, 26–27  As evidence for the Earth being a sphere, in Chapter One he cites the observation that stars rise and set sooner for those in the east ("Orientals"), and lunar eclipses happen earlier; that stars near the North Pole are visible to those further north and those in the south can see different ones; that at sea one can see further by climbing up the mast; and that water seeks its natural shape which is round, as a drop.

See also

References

  1. ^ Olaf Pedersen, "In Quest of Sacrobosco", Journal for the History of Astronomy, 16 (1985): 175-221. Pedersen identifies 35 printings in Venice, another 35 in Paris, and more in 14 other cities throughout Europe.
  2. ^ Grant, Edward (1974). A Source Book in Medieval Science. Cambridge: Harvard University Press.
  3. ^ Russell, Jeffrey Burton (1991). Inventing the Flat Earth. New York: Praeger. ISBN 0-275-93956-1.

Sources

External links

This page was last edited on 8 April 2024, at 12:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.