To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Davson–Danielli model

From Wikipedia, the free encyclopedia

The Davson–Danielli model (or paucimolecular model) was a model of the plasma membrane of a cell, proposed in 1935 by Hugh Davson and James Danielli. The model describes a phospholipid bilayer that lies between two layers of globular proteins, which is both trilaminar and lipoprotinious.[1] The phospholipid bilayer had already been proposed by Gorter and Grendel in 1925;[2] however, the flanking proteinaceous layers in the Davson–Danielli model were novel and intended to explain Danielli's observations on the surface tension of lipid bi-layers (It is now known that the phospholipid head groups are sufficient to explain the measured surface tension[3]).

Evidence for the model included electron microscopy, in which high-resolution micrographs showed three distinct layers within a cell membrane, with an inner white core and two flanking dark layers.[4] Since proteins usually appear dark and phospholipids white, the micrographs were interpreted as a phospholipid bilayer sandwiched between two protein layers. The model proposed an explanation for the ability for certain molecules to permeate the cell membrane while other molecules could not, while also accounting for the thinness of cell membranes.

Despite the Davson–Danielli model being scientifically accepted, the model made assumptions, such as assuming that all membranes had the same structure, thickness and lipid-protein ratio, contradicting the observation that membranes could have specialized functions. Furthermore, the Davson–Danielli model could not account for certain observed phenomena, notably the bulk movement of molecules through the plasma membrane through active transport. Another shortcoming of the Davson–Danielli model was that many membrane proteins were known to be amphipathic and mostly hydrophobic, and therefore existing outside of the cell membranes in direct contact remained an unresolved complication.

The Davson–Danielli model was scientifically accepted until Seymour Jonathan Singer and Garth L. Nicolson advanced the fluid mosaic model in 1972.[5] The fluid mosaic model expanded on the Davson–Danielli model by including transmembrane proteins, and eliminated the previously-proposed flanking protein layers that were not well-supported by experimental evidence. The experimental evidence that falsified the Davson–Danielli model included membrane freeze-fracturing, which revealed irregular rough surfaces in the membrane, representing trans-membrane integral proteins and fluorescent antibody tagging of membrane proteins, which demonstrated their fluidity within the membrane.

YouTube Encyclopedic

  • 1/3
    Views:
    19 412
    31 098
    29 557
  • 1.3 Skill: Analysis that led to the Davson-Danielli model
  • Models of membrane structure (IB Bio) (2015)
  • Davson-Danielli Model & Singer-Nicolson Fluid Mosaic Model

Transcription

See also

References

  1. ^ Danielli, J. F.; Davson, H. (1935). "A contribution to the theory of permeability of thin films". Journal of Cellular and Comparative Physiology. 5 (4): 495–508. doi:10.1002/jcp.1030050409.
  2. ^ Gorter, E.; Grendel, F. (1925). "On Bimolecular Layers of Lipoids on the Chromocytes of the Blood". The Journal of Experimental Medicine. 41 (4): 439–443. doi:10.1084/jem.41.4.439. PMC 2130960. PMID 19868999.
  3. ^ Wells, W. A. (2005). "The invention of freeze fracture EM and the determination of membrane structure". The Journal of Cell Biology. 168 (2): 524–525. doi:10.1083/jcb1682fta2. PMC 2254696.
  4. ^ Paxton, Steve; Peckham, Michelle; Knibbs, Adele. "Plasma Membrane". The Leeds Histology Guide. Retrieved 18 October 2022.
  5. ^ Singer, S. J.; Nicolson, G. L. (1972). "The fluid mosaic model of the structure of cell membranes". Science. 175 (4023): 720–731. doi:10.1126/science.175.4023.720. PMID 4333397. S2CID 83851531.
This page was last edited on 9 February 2023, at 14:51
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.