To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Cyclopentene
Cyclopentene
Cyclopentene
Ball-and-stick model of cyclopentene
Ball-and-stick model of cyclopentene
Space-filling model of cyclopentene
Names
Preferred IUPAC name
Cyclopentene
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.030 Edit this at Wikidata
UNII
  • InChI=1S/C5H8/c1-2-4-5-3-1/h1-2H,3-5H2 checkY
    Key: LPIQUOYDBNQMRZ-UHFFFAOYSA-N checkY
  • InChI=1/C5H8/c1-2-4-5-3-1/h1-2H,3-5H2
    Key: LPIQUOYDBNQMRZ-UHFFFAOYAS
  • C1CC=CC1
Properties
C5H8
Molar mass 68.11 g/mol
Density 0.771 g/cm3
Melting point −135 °C (−211 °F; 138 K)
Boiling point 44 to 46 °C (111 to 115 °F; 317 to 319 K)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
1
3
1
Flash point −29 °C (−20 °F; 244 K)
Related compounds
Related compounds
Cyclopentadiene
Cyclobutene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Cyclopentene is a chemical compound with the formula (CH2)3(CH)2. It is a colorless liquid with a petrol-like odor. It has few applications, and thus is mainly used as a minor component of gasoline, present in concentrations of less than 1%.[1][2] It is one of the principal cycloalkenes.

YouTube Encyclopedic

  • 1/3
    Views:
    18 353
    20 557
    55 130
  • Hydroboration Oxidation Mechanism of Alkenes - BH3, THF, H2O2, OH- Organic Chemistry
  • Alkene + Br2 and H2O Reaction Mechanism - Halogenation & Halohydrin, Anti Addition
  • Alkene Reactions Practice Problems and Mechanism - Organic Chemistry

Transcription

Production

Cyclopentene is produced industrially in large amounts by steam cracking of naphtha. In the laboratory, it is prepared by dehydration of cyclopentanol.[3] Substituted cyclopentenes are the product of the vinylcyclopropane-cyclopentene rearrangement.[4]

It can also be produced by the catalytic hydrogenation of cyclopentadiene.[5]

Reactions

The polymerization of cyclopentene by Ziegler-Natta catalysts yields 1,3-linkages, not the more typical 1,2-linked polymer.[6]

Palladium-catalyzed hydrocarboxylation of cyclopentene gives cyclopentanecarboxylic acid:[7]

C5H8 + CO + H2O → C5H9CO2H

References

  1. ^ Dieter Hönicke; Ringo Födisch; Peter Claus; Michael Olson (2002). "Cyclopentadiene and Cyclopentene". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_227. ISBN 978-3527306732.
  2. ^ "Hydrocarbon Composition of Gasoline Vapor Emissions from Enclosed Fuel Tanks". nepis.epa.gov. United States Environmental Protection Agency. 2011.
  3. ^ B. B. Corson, V. N. Ipatieff (1939). "Cyclohexylbenzene". Organic Syntheses. 19: 36. doi:10.15227/orgsyn.019.0036.
  4. ^ Baldwin, John E. (2003). "Thermal Rearrangements of Vinylcyclopropanes to Cyclopentenes". Chemical Reviews. 103 (4): 1197–212. doi:10.1021/cr010020z. PMID 12683781.
  5. ^ D. Hönicke, R. Födisch, P. Claus, M. Olson: Cyclopentadiene and Cyclopentene, in: Ullmanns Enzyklopädie der Technischen Chemie 2002, Wiley-VCH, Weinheim.
  6. ^ Collins, Scott; Kelly, W. Mark (1992). "The microstructure of poly(cyclopentene) produced by polymerization of cyclopentene with homogeneous Ziegler-Natta catalysts". Macromolecules. 25 (1): 233–7. Bibcode:1992MaMol..25..233C. doi:10.1021/ma00027a039.
  7. ^ Sang, Rui; Kucmierczyk, Peter; Dühren, Ricarda; Razzaq, Rauf; Dong, Kaiwu; Liu, Jie; Franke, Robert; Jackstell, Ralf; Beller, Matthias (2019). "Synthesis of Carboxylic Acids by Palladium‐Catalyzed Hydroxycarbonylation". Angewandte Chemie International Edition. 58 (40): 14365–14373. doi:10.1002/anie.201908451. PMID 31390131. S2CID 199466915.

External links

This page was last edited on 3 April 2024, at 06:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.