To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Cornacchia's algorithm

From Wikipedia, the free encyclopedia

In computational number theory, Cornacchia's algorithm is an algorithm for solving the Diophantine equation , where and d and m are coprime. The algorithm was described in 1908 by Giuseppe Cornacchia.[1]

The algorithm

First, find any solution to (perhaps by using an algorithm listed here); if no such exist, there can be no primitive solution to the original equation. Without loss of generality, we can assume that r0m/2 (if not, then replace r0 with m - r0, which will still be a root of -d). Then use the Euclidean algorithm to find , and so on; stop when . If is an integer, then the solution is ; otherwise try another root of -d until either a solution is found or all roots have been exhausted. In this case there is no primitive solution.

To find non-primitive solutions (x, y) where gcd(x, y) = g ≠ 1, note that the existence of such a solution implies that g2 divides m (and equivalently, that if m is square-free, then all solutions are primitive). Thus the above algorithm can be used to search for a primitive solution (u, v) to u2 + dv2 = m/g2. If such a solution is found, then (gu, gv) will be a solution to the original equation.

Example

Solve the equation . A square root of −6 (mod 103) is 32, and 103 ≡ 7 (mod 32); since and , there is a solution x = 7, y = 3.

References

  1. ^ Cornacchia, G. (1908). "Su di un metodo per la risoluzione in numeri interi dell' equazione ". Giornale di Matematiche di Battaglini. 46: 33–90.

External links

This page was last edited on 2 April 2024, at 21:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.