To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Constant function

From Wikipedia, the free encyclopedia

In mathematics, a constant function is a function whose (output) value is the same for every input value.

YouTube Encyclopedic

  • 1/5
    Views:
    61 906
    5 070
    22 757
    66 743
    3 245 052
  • What is a Constant Function ? - Learn Relation & Function Lessons
  • GENERAL MATHEMATICS: Types of Functions (Constant Function) y=c or f(x)=c
  • What is a Constant Function - An Introduction / Maths Algebra
  • Constant Function Class 11 Maths NCERT Syllabus 2019 Q8
  • What is a function? | Functions and their graphs | Algebra II | Khan Academy

Transcription

Basic properties

An example of a constant function is y(x) = 4, because the value of y(x) is 4 regardless of the input value x.

As a real-valued function of a real-valued argument, a constant function has the general form y(x) = c or just y = c. For example, the function y(x) = 4 is the specific constant function where the output value is c = 4. The domain of this function is the set of all real numbers. The image of this function is the singleton set {4}. The independent variable x does not appear on the right side of the function expression and so its value is "vacuously substituted"; namely y(0) = 4, y(−2.7) = 4, y(π) = 4, and so on. No matter what value of x is input, the output is 4.[1]

The graph of the constant function y = c is a horizontal line in the plane that passes through the point (0, c).[2] In the context of a polynomial in one variable x, the constant function is called non-zero constant function because it is a polynomial of degree 0, and its general form is f(x) = c, where c is nonzero. This function has no intersection point with the x-axis, meaning it has no root (zero). On the other hand, the polynomial f(x) = 0 is the identically zero function. It is the (trivial) constant function and every x is a root. Its graph is the x-axis in the plane.[3] Its graph is symmetric with respect to the y-axis, and therefore a constant function is an even function.[4]

In the context where it is defined, the derivative of a function is a measure of the rate of change of function values with respect to change in input values. Because a constant function does not change, its derivative is 0.[5] This is often written: . The converse is also true. Namely, if y′(x) = 0 for all real numbers x, then y is a constant function.[6] For example, given the constant function . The derivative of y is the identically zero function .

Other properties

For functions between preordered sets, constant functions are both order-preserving and order-reversing; conversely, if f is both order-preserving and order-reversing, and if the domain of f is a lattice, then f must be constant.

  • Every constant function whose domain and codomain are the same set X is a left zero of the full transformation monoid on X, which implies that it is also idempotent.
  • It has zero slope or gradient.
  • Every constant function between topological spaces is continuous.
  • A constant function factors through the one-point set, the terminal object in the category of sets. This observation is instrumental for F. William Lawvere's axiomatization of set theory, the Elementary Theory of the Category of Sets (ETCS).[7]
  • For any non-empty X, every set Y is isomorphic to the set of constant functions in . For any X and each element y in Y, there is a unique function such that for all . Conversely, if a function satisfies for all , is by definition a constant function.
    • As a corollary, the one-point set is a generator in the category of sets.
    • Every set is canonically isomorphic to the function set , or hom set in the category of sets, where 1 is the one-point set. Because of this, and the adjunction between Cartesian products and hom in the category of sets (so there is a canonical isomorphism between functions of two variables and functions of one variable valued in functions of another (single) variable, ) the category of sets is a closed monoidal category with the Cartesian product of sets as tensor product and the one-point set as tensor unit. In the isomorphisms natural in X, the left and right unitors are the projections and the ordered pairs and respectively to the element , where is the unique point in the one-point set.

A function on a connected set is locally constant if and only if it is constant.

References

  1. ^ Tanton, James (2005). Encyclopedia of Mathematics. Facts on File, New York. p. 94. ISBN 0-8160-5124-0.
  2. ^ Dawkins, Paul (2007). "College Algebra". Lamar University. p. 224. Retrieved January 12, 2014.
  3. ^ Carter, John A.; Cuevas, Gilbert J.; Holliday, Berchie; Marks, Daniel; McClure, Melissa S. (2005). "1". Advanced Mathematical Concepts - Pre-calculus with Applications, Student Edition (1 ed.). Glencoe/McGraw-Hill School Pub Co. p. 22. ISBN 978-0078682278.
  4. ^ Young, Cynthia Y. (2021). Precalculus (3rd ed.). John Wiley & Sons. p. 122.
  5. ^ Varberg, Dale E.; Purcell, Edwin J.; Rigdon, Steven E. (2007). Calculus (9th ed.). Pearson Prentice Hall. p. 107. ISBN 978-0131469686.
  6. ^ "Zero Derivative implies Constant Function". Retrieved January 12, 2014.
  7. ^ Leinster, Tom (27 Jun 2011). "An informal introduction to topos theory". arXiv:1012.5647 [math.CT].
  • Herrlich, Horst and Strecker, George E., Category Theory, Heldermann Verlag (2007).

External links

This page was last edited on 3 April 2024, at 02:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.