To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In a spherical coordinate system, a colatitude is the complementary angle of a given latitude, i.e. the difference between a right angle and the latitude.[1] In geography, Southern latitudes are defined to be negative, and as a result the colatitude is a non-negative quantity, ranging from zero at the North pole to 180° at the South pole.

The colatitude corresponds to the conventional 3D polar angle in spherical coordinates, as opposed to the latitude as used in cartography.

YouTube Encyclopedic

  • 1/3
    Views:
    13 122
    18 804
    13 805
  • NAV: VA01/pt04 Co-latitude
  • Bizuzinho DLA DLO LAM LOM CO Latitude Ant Meridiano como proceder!
  • NAV: VA01/pt05 Diferença de Latitude, DLA

Transcription

Examples

Latitude and colatitude sum up to 90°.

Place Latitude Colatitude
North pole 90°
Equator 90°
South pole −90° 180°

Astronomical use

The colatitude is most useful in astronomy because it refers to the zenith distance of the celestial poles. For example, at latitude 42°N, for Polaris (approximately on the North celestial pole), the distance from the zenith (overhead point) to Polaris is 90 − 42 = 48°.

Adding the declination of a star to the observer's colatitude gives the maximum altitude of that star (its angle from the horizon at culmination or upper transit). For example, if Alpha Centauri is seen with upper culmination altitude of 72° north (or 108° south) w.r.t. the observer and its declination is known (60°S), then it can be determined that the observer's colatitude is 108° − 60° = 48° (i.e. the observer's latitude is 90° − 48° = 42°S).

Stars whose declination absolute value exceed the observer's colatitude in the corresponding hemisphere (see culmination) are called circumpolar because they will never set as seen from that latitude. If the star's declination absolute value exceed the observer's colatitude in the opposite hemisphere, then it will never be seen from that location. For example, Alpha Centauri will always be visible at night from Perth, Western Australia (32°S) because the colatitude of Perth is 90° − 32° = 58°, and the declination of Alpha Centauri (-60°) has an absolute value 60 which is greater than 58 in the corresponding hemisphere; on the other hand, the star will never rise in Juneau, Alaska (58°N) because Alpha Centauri's declination absolute value of 60 is more than observer's colatitude (32°) in the opposite hemisphere. Additionally, colatitude is used as part of the Schwarzschild metric in general relativity.

References

  1. ^ Weisstein, Eric W. "Colatitude". MathWorld. Wolfram Research.
This page was last edited on 28 May 2024, at 09:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.