To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Star (graph theory)

From Wikipedia, the free encyclopedia

In graph theory, a star Sk is the complete bipartite graph K1,k : a tree with one internal node and k leaves (but no internal nodes and k + 1 leaves when k ≤ 1). Alternatively, some authors define Sk to be the tree of order k with maximum diameter 2; in which case a star of k > 2 has k − 1 leaves.

A star with 3 edges is called a claw.

The star Sk is edge-graceful when k is even and not when k is odd. It is an edge-transitive matchstick graph, and has diameter 2 (when l > 1), girth ∞ (it has no cycles), chromatic index k, and chromatic number 2 (when k > 0). Additionally, the star has large automorphism group, namely, the symmetric group on k letters.

Stars may also be described as the only connected graphs in which at most one vertex has degree greater than one.

YouTube Encyclopedic

  • 1/3
    Views:
    3 505
    899
    391 768
  • What are Star Graphs? | Graph Theory
  • TYPES OF GRAPHS | STAR GRAPH | CYCLIC GRAPH | CYCLE GRAPH | GRAPH THEORY | DISCRETE MATHEMATICS |
  • INTRODUCTION to GRAPH THEORY - DISCRETE MATHEMATICS

Transcription

Relation to other graph families

Claws are notable in the definition of claw-free graphs, graphs that do not have any claw as an induced subgraph.[1][2] They are also one of the exceptional cases of the Whitney graph isomorphism theorem: in general, graphs with isomorphic line graphs are themselves isomorphic, with the exception of the claw and the triangle K3.[3]

A star is a special kind of tree. As with any tree, stars may be encoded by a Prüfer sequence; the Prüfer sequence for a star K1,k consists of k − 1 copies of the center vertex.[4]

Several graph invariants are defined in terms of stars. Star arboricity is the minimum number of forests that a graph can be partitioned into such that each tree in each forest is a star,[5] and the star chromatic number of a graph is the minimum number of colors needed to color its vertices in such a way that every two color classes together form a subgraph in which all connected components are stars.[6] The graphs of branchwidth 1 are exactly the graphs in which each connected component is a star.[7]

The star graphs S3, S4, S5 and S6.

Other applications

The set of distances between the vertices of a claw provides an example of a finite metric space that cannot be embedded isometrically into a Euclidean space of any dimension.[8]

The star network, a computer network modeled after the star graph, is important in distributed computing.

A geometric realization of the star graph, formed by identifying the edges with intervals of some fixed length, is used as a local model of curves in tropical geometry. A tropical curve is defined to be a metric space that is locally isomorphic to a star-shaped metric graph.

See also

References

  1. ^ Faudree, Ralph; Flandrin, Evelyne; Ryjáček, Zdeněk (1997), "Claw-free graphs — A survey", Discrete Mathematics, 164 (1–3): 87–147, doi:10.1016/S0012-365X(96)00045-3, MR 1432221.
  2. ^ Chudnovsky, Maria; Seymour, Paul (2005), "The structure of claw-free graphs", Surveys in combinatorics 2005 (PDF), London Math. Soc. Lecture Note Ser., vol. 327, Cambridge: Cambridge Univ. Press, pp. 153–171, MR 2187738.
  3. ^ Whitney, Hassler (January 1932), "Congruent Graphs and the Connectivity of Graphs", American Journal of Mathematics, 54 (1): 150–168, doi:10.2307/2371086, hdl:10338.dmlcz/101067, JSTOR 2371086.
  4. ^ Gottlieb, J.; Julstrom, B. A.; Rothlauf, F.; Raidl, G. R. (2001). "Prüfer numbers: A poor representation of spanning trees for evolutionary search" (PDF). GECCO-2001: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann. pp. 343–350. ISBN 1558607749.
  5. ^ Hakimi, S. L.; Mitchem, J.; Schmeichel, E. E. (1996), "Star arboricity of graphs", Discrete Math., 149: 93–98, doi:10.1016/0012-365X(94)00313-8
  6. ^ Fertin, Guillaume; Raspaud, André; Reed, Bruce (2004), "Star coloring of graphs", Journal of Graph Theory, 47 (3): 163–182, doi:10.1002/jgt.20029.
  7. ^ Robertson, Neil; Seymour, Paul D. (1991), "Graph minors. X. Obstructions to tree-decomposition", Journal of Combinatorial Theory, 52 (2): 153–190, doi:10.1016/0095-8956(91)90061-N.
  8. ^ Linial, Nathan (2002), "Finite metric spaces–combinatorics, geometry and algorithms", Proc. International Congress of Mathematicians, Beijing, vol. 3, pp. 573–586, arXiv:math/0304466, Bibcode:2003math......4466L
This page was last edited on 24 January 2024, at 03:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.