To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Classical genetics

From Wikipedia, the free encyclopedia

Classical genetics is the branch of genetics based solely on visible results of reproductive acts. It is the oldest discipline in the field of genetics, going back to the experiments on Mendelian inheritance by Gregor Mendel who made it possible to identify the basic mechanisms of heredity. Subsequently, these mechanisms have been studied and explained at the molecular level.

Classical genetics consists of the techniques and methodologies of genetics that were in use before the advent of molecular biology. A key discovery of classical genetics in eukaryotes was genetic linkage. The observation that some genes do not segregate independently at meiosis broke the laws of Mendelian inheritance and provided science with a way to map characteristics to a location on the chromosomes. Linkage maps are still used today, especially in breeding for plant improvement.

After the discovery of the genetic code and such tools of cloning as restriction enzymes, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use. Classical genetics is often contrasted with reverse genetics, and aspects of molecular biology are sometimes referred to as molecular genetics.

YouTube Encyclopedic

  • 1/3
    Views:
    3 756 549
    160 049
    1 788
  • Heredity: Crash Course Biology #9
  • Pedigrees | Classical genetics | High school biology | Khan Academy
  • Classic Mendelian Genetics – Genetics | Lecturio

Transcription

So, I have this brother, John. You may have heard of him. JOHN: Hi there! HANK: As it happens, John and I have the exact same parents. JOHN: Yes, Mom and Dad Green. HANK: And since we have the same parents, it's to be expected that John and I would have similar physical characteristics because the source of our DNA is exactly the same. JOHN: Hank and I share some genes, but nobody knew anything about chromosomes or DNA until the middle of the 20th century. And people have been noticing that brothers tend to look alike since like, people started noticing stuff or whatever. HANK: That was very scientific, John. JOHN: I will remind you that I am doing you a favor. Heredity: it's basically just the passing on of genetic traits from parents to offspring. Like John said, the study of heredity is ancient, although the first ideas about how the goods are passed on from parents to kids were really really really really really really wrong. For instance, the concept that people were working with for nearly 2,000 years came from Aristotle, who suggested that: We're each a mixture of our parents' traits, with the father kind of supplying the life force to the new human and the mother supplying the building blocks to put it all together. Aristotle also thought that semen was like highly-purified menstrual blood, which is why we still refer to "bloodlines" when we're talking about heredity. Anyway, since nobody had a better idea, and since nobody really wanted to tangle with Aristotle, for hundreds of years everybody just assumed that our parents' traits just sort of blended together in us: like if a black squirrel and a white squirrel fell in love and decided to start a family together, their offspring would be gray. The first person to really start studying and thinking about heredity in a modern way was this Austrian monk named Gregor Mendel and Mendel demonstrated that inheritance followed particular patterns. In the mid-1800s, Mendel spent sort of an unhealthy amount of time grubbing around in his garden with a bunch of pea plants, and through a series of experiments, crossing the pea plants and seeing which traits got passed on and which didn't--he came up with a framework for understanding how traits actually get passed from one generation to another. So, to talk about Classical Genetics, which includes Mendel's ideas about how traits get passed along from parents to children, we kind of have to simplify the crap out of genetics. I hope you don't mind. So we've all got chromosomes, which are the form that our DNA takes in order to get passed on from parent to child. Human cells have 23 pairs of chromosomes. Now a gene is a section of DNA in a specific location on a chromosome that contains information that determines a trait. Of course, the vast majority of the time, a physical trait is a reflection of a bunch of different genes working together, which makes this all very confusing, and when this happens it's called a polygenic trait. Polygenic: many genes. And then again, sometimes a single gene can influence how multiple traits are going to be expressed; these genes are called pleiotropic. However, some very few, but some single traits are decided by a single gene. Like the color of pea flowers for example, which is what Mendel studied when he discovered all of this stuff, and when that happens, in Mendel's honor, we call it a Mendelian trait. There are a couple of examples of Mendelian traits in humans, one of them being the relative wetness or dryness of your ear wax. So, there is just one gene that determines the consistency of your earwax, and that gene is located at the very same spot on each person's chromosome. Right here! Chromosome 16. However, there's one version of this gene, or allele, that says the wax is going to be wet, and there's another allele that says the wax is going to be dry. You may be asking yourself what the difference is between these two things and I'm glad you asked because we actually know the answer to that question. Among the many amino acids that make up this particular gene sequence, there is one exact slot where they're different. If the amino acid is glycine in that slot, you're gonna have wet ear wax. But if it's arginine, it's dry. Now comes the question of how you get what you get from your parents. In most animals, basically any cell in the body that isn't a sperm or an egg -- these are called somatic cells -- are diploid, meaning there are two sets of chromosomes, one inherited from each of your parents. So you get one earwax-determining allele from your mom and one from your dad. I should mention that the reason for this is that gametes, or sex cells--Senor Sperm and Madame Egg--are haploid cells, meaning they only have one set of chromosomes. Again, for emphasis, non-sex cells are called somatic cells and they are diploid. Sex cells are gametes and they are haploid. This makes a lot of sense because a sperm or an egg has a very specific motivation: they're seriously hoping to score, and if they do, they plan to join with a complementary haploid cell that has the other pair of chromosomes they're going to need to make a new human, or buffalo or squid or whatever. Also, just so you know, some plants have polyploid cells, which means they have more than two sets of chromosomes in each cell, which isn't better or anything--it's just how they do. But anyway, the point of all that is that we inherit one version of the earwax gene from each of our parents. So, back to earwax! So, let's just say your mom gives you a wet earwax allele and your dad gives you a dry earwax allele. Good Lord, your dad has horribly ugly ears! Anyway, since your parents have two alleles, each for one gene inherited from each of their parents, the one passed along to you is entirely random. So, a lot of what Mendel discovered is that when there are two alleles that decide the outcome of a specific trait, one of these alleles could be dominant and the other one recessive. Dominance is the relationship between alleles in which one allele masks or totally suppresses the expression of another allele. So, back to earwax, because I know we all love talking about it so much. It turns out that Mom's wet earwax allele is dominant, which is why she gets a BIG W, and Dad's dry earwax allele is recessive, which is why he has to be a little w. JOHN: Go, Mom! HANK: Oh, you're back! JOHN: Yeah! You sound surprised. HANK: Anyway, Mom's allele is dominant, and that settles it, right-- we're gonna have wet earwax? JOHN: Uh, something about the way that you said that tells me it's not that easy. HANK: Aw, you are so much smarter than you look. It is indeed not that easy. So, just because an allele is recessive doesn't mean it's less common in all your genetic material than the dominant allele. Which leads us to the assumption, the CORRECT assumption, that there's something else going on here. JOHN: I'm definitely getting that vibe from you. HANK: So, it has to do with Mom and Dad's parents. Because everybody inherits two alleles from their parents. Mom got one from Nanny and one from Paw Paw. And let's just say Mom got a little w from Nanny and a big W allele from Paw Paw. That means Mom's genotype, or genetic makeup when it comes to that single trait, is heterozygous, which means she inherited two different versions of the same gene from each of her parents. Dad, on the other hand is a homozygote. JOHN: Let me guess, that means that he had two of the same allele, either a little w or a Big W allele inherited from both Grandma and Grandpa. HANK: Right! And in order for this to all work out the way that I want it to, let's just say that both Grandma and Grandpa would have passed little w's down to Dad, making his genotype homozygous recessive for this gene. JOHN: Okay, so I'm keeping score in my head right now. And according to my brain, Mom is a Big W, little w and Dad is a little w, little w. HANK: And now we're going to figure out what our earwax phenotype is. And phenotype is what's expressed physically, or in this case, what you'd see if you looked into our ears. JOHN: Alright, so are we gonna do a Punnett Square or anything? This is why I do history, if we're going to do Punnett Squares, I'm leaving! HANK: But I was just going to start to talk about people again. So Reginald C. Punnett, who was a total Gregor Mendel fanboy, invented the Punnett Square as a way to diagram the outcome of a particular cross breeding experiment. A really simple one looks like this: So, let's put Mom on the side here and give her a Big W and a little w. And let's put Dad on the top, and he gets two little w's. So if you fill this in, it looks like there's a 50/50 chance that any child of this mating will be homozygous or heterozygous. And as for our phenotype, it shakes out the same way: John and I both have a 50% chance of having wet ear wax and a 50% chance of having dry ear wax. So I just had to go and call John, because now he's not participating because he doesn't like Punnett Sauares, and it turns out, that he has wet ear wax. I also have wet ear wax. Which, you know, is not that unlikely, considering that our parents were homozygous and heterozygous. This may explain the odor of our bathroom growing up because it turns out there's a correlation between wet ear wax and body odor, because ear wax and armpit sweat are produced by the same type of gland. Because this one gene has an effect on multiple traits or phenotypes, it's an example of a pleiotropic gene, because the gene affects how wet your ear wax is, and how much you stink. One more thing you might find interesting: sex-linked inheritance. So we've got 23 chromosomes: 22 pairs are autosomes, or non-sex chromosomes, and 1 pair the 23rd pair, to be exact--is a sex chromosome. At that 23rd pair, women have two full length chromosomes, or "XX," and men have one X chromosome (that they inherited from their Mom) and this one little, short, puny, shriveled chromosome that we call "Y," which is why men are "XY." So, certain genetic traits are linked to a person's sex and are passed on through the sex chromosomes. Since dudes don't have two full chromosomes on pair 23, there may be recessive alleles on the X that they inherited from their mom that will get expressed, since there's not any information on the Y chromosome to provide the possibility for a dominant allele counteracting that specific trait. Take, for instance, balding. Women rarely go bald in their youth like some men do because it is caused by a recessive allele located in a gene on the X chromosome. So it's rare that women get 2 recessive alleles. But men need just one recessive allele and, Doh! Baldy bald! And that allele is on their X chromosome, which they got from Mom. But was Mom bald? Probably not. And where did Mom get that allele on her X chromosome? Either from her Dad or her Mom. So if you're bald, you can go ahead and blame it on your maternal grandmother, or your maternal-maternal great-grandfather or your maternal-maternal-maternal great-great grandfather who probably went bald before he was 30. So, Genetics, you guys. Resistance is futile. Thanks to my brother John for sharing his personal genetic information with us, and also his face and voice and all that stuff. That was very nice. Think of us next time you swab out your ears! Actually they say that you really shouldn't do that because we have earwax for a reason, and you might poke your brain or something. Okay, that's the last time I'm mentioning earwax. Review! Click on any of these things to go back to that section of the video. If you have any questions, please ask them in the comments.

Basic definitions

At the base of classical genetics is the concept of a gene, the hereditary factor tied to a particular simple feature (or character).[citation needed]

The set of genes for one or more characters possessed by an individual is the genotype. A diploid individual often has two alleles for the determination of a character.[citation needed]

Overview

Classical genetics is the aspect of genetics concerned solely with the transmission of genetic traits via reproductive acts. Genetics is, generally, the study of genes, genetic variation, and heredity. The process by which characteristics are passed down from parents to their offspring is called heredity. In the sense of classical genetics, variation is known as the lack of resemblance in related individuals and can be categorized as discontinuous or continuous. Genes are a fundamental part of DNA that is aligned linearly on a eukaryotic chromosome. Chemical information that is transported and encoded by each gene is referred to as a trait. Many organisms possess two genes for each individual trait that is present within that particular individual. These paired genes that control the same trait is classified as an allele. In an individual, the allelic genes that are expressed can be either homozygous, meaning the same, or heterozygous, meaning different. Many pairs of alleles have differing effects that are portrayed in an offspring's phenotype and genotype. The phenotype is a general term that defines an individual's visible, physical traits. The genotype of an offspring is known as its genetic makeup. The alleles of genes can either be dominant or recessive. A dominant allele needs only one copy to be expressed while a recessive allele needs two copies (homozygous) in a diploid organism to be expressed. Dominant and recessive alleles help to determine the offspring's genotypes, and therefore phenotypes.[citation needed]

History

Classical genetics is often referred to as the oldest form of genetics, and began with Gregor Mendel's experiments that formulated and defined a fundamental biological concept known as Mendelian inheritance. Mendelian inheritance is the process in which genes and traits are passed from a set of parents to their offspring. These inherited traits are passed down mechanistically with one gene from one parent and the second gene from another parent in sexually reproducing organisms. This creates the pair of genes in diploid organisms. Gregor Mendel started his experimentation and study of inheritance with phenotypes of garden peas and continued the experiments with plants. He focused on the patterns of the traits that were being passed down from one generation to the next generation. This was assessed by test-crossing two peas of different colors and observing the resulting phenotypes. After determining how the traits were likely inherited, he began to expand the amount of traits observed and tested and eventually expanded his experimentation by increasing the number of different organisms he tested.

About 150 years ago, Gregor Mendel published his first experiments with the test crossing of Pisum peas. Seven different phenotypic characteristics were studied and tested in the peas, including seed color, flower color and seed shape. The seven different characteristics which Mendel selected / checked for the experiment were as follows:

  • He checked the different shape of the ripen seeds
  • The color of the seed's albumen was checked
  • He then selected seed coat color
  • Shape of the ripen pods was seen
  • Color of the unripened pods was checked
  • Flower position on the axial was checked
  • Height of the plant was checked, as if it is tall or dwarf.[1]

Mendel took peas that had differing phenotypic characteristics and test-crossed them to assess how the parental plants passed the traits down to their offspring. He started by crossing a round, yellow and round, green pea and observed the resulting phenotypes. The results of this experiment allowed him to see which of these two traits was dominant and which was recessive based upon the number of offspring with each phenotype. Mendel then chose to further his experiments by crossing a pea plant homozygous dominant for round and yellow phenotypes with a pea plant that was homozygous recessive for wrinkled and green. The plants that were originally crossed are known as the parental generation, or P generation, and the offspring resulting from the parental cross is known as the first filial, or F1, generation. The plants of the F1 generation resulting from this hybrid cross were all heterozygous round and yellow seeds.

Classical genetics is a hallmark of the start of great discovery in biology, and has led to increased understanding of multiple important components of molecular genetics, human genetics, medical genetics, and much more. Thus, reinforcing Mendel's nickname as the father of modern genetics.

In other words, we can say that classical genetics is basis of the modern genetics. Classical genetics is the Mendelian genetics or the older concepts of the genetics, which solely expressed based on the phenotypes resulted from breeding experiments while the modern genetics is the new concept of genetics, which allows the direct investigation of genotypes together with phenotypes.

Monohybrid Cross (3:1) [2]

GAMETES       R           r    
Y

y

YR Yr
yR yr

Dihybrid Cross (9:3:3:1)

GAMETES      YR          yR           Yr               yr
YR

yR

Yr

yr

YYRR YyRR YYRr YyRr
YyRR yyRR YyRr yyRr
YYRr YyRr YYrr Yyrr
YyRr yyRr Yyrr yyrr

See also

References

  1. ^ Peters, James Arthur (1959). Classic papers in genetics. Englewood Cliffs, N.J.: Prentice-Hall. doi:10.5962/bhl.title.6458.
  2. ^ Gautam, Akash (2018), "Mendel's Laws", in Vonk, Jennifer; Shackelford, Todd (eds.), Encyclopedia of Animal Cognition and Behavior, Cham: Springer International Publishing, pp. 1–3, doi:10.1007/978-3-319-47829-6_2054-1, ISBN 978-3-319-47829-6, retrieved 2022-10-09
This page was last edited on 20 September 2023, at 05:09
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.