To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Chlorine monoxide

From Wikipedia, the free encyclopedia

Chlorine monoxide
Names
Preferred IUPAC name
Chlorine monoxide
Systematic IUPAC name
Chlorooxidanyl
Other names
Chlorine(II) oxide
Identifiers
3D model (JSmol)
Abbreviations ClO
ChEBI
ChemSpider
MeSH Chlorosyl
UNII
  • InChI=1S/ClO/c1-2
    Key: NHYCGSASNAIGLD-UHFFFAOYSA-N
  • [O]Cl
Properties
ClO
Molar mass 51.45 g·mol−1
Thermochemistry
101.8 kJ/mol[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chlorine monoxide is a chemical radical with the chemical formula ClO. It plays an important role in the process of ozone depletion. In the stratosphere, chlorine atoms react with ozone molecules to form chlorine monoxide and oxygen.

Cl + O3 → ClO + O2

This reaction causes the depletion of the ozone layer.[1] The resulting ClO radicals can further react:

ClO + O → Cl + O2

regenerating the chlorine radical. In this way, the overall reaction for the decomposition of ozone is catalyzed by chlorine, as ultimately chlorine remains unchanged. The overall reaction is:

O + O3 → 2 O2

There has been a significant impact of the use of CFCs on the upper stratosphere, although many countries have agreed to ban the use of CFCs. The nonreactive nature of CFCs allows them to pass into the stratosphere, where they undergo photo-dissociation to form Cl radicals. These then readily form chlorine monoxide, and this cycle can continue until two radicals react to form dichlorine monoxide, terminating the radical reaction. Because the concentration of CFCs in atmosphere is very low, the probability of a terminating reaction is exceedingly low, meaning each radical can decompose many thousands of molecules of ozone.

Even though the use of CFCs has been banned in many countries, CFCs can stay in the atmosphere for 50 to 500 years. This causes many chlorine radicals to be produced and hence a significant amount of ozone molecules are decomposed before the chlorine radicals are able to react with chlorine monoxide to form dichlorine monoxide.

YouTube Encyclopedic

  • 1/3
    Views:
    752
    9 593 334
    4 392
  • How to Write the Formula for Dichlorine Monoxide
  • 5 of the World's Most Dangerous Chemicals
  • How to find the Oxidation Number for Cl in Cl2O (Dichlorine monoxide)

Transcription

References

  1. ^ a b Egon Wiberg; Nils Wiberg; Arnold Frederick Holleman (2001). Inorganic chemistry. Academic Press. p. 462. ISBN 0-12-352651-5.
This page was last edited on 28 February 2024, at 19:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.