To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Channel surface

From Wikipedia, the free encyclopedia

canal surface: directrix is a helix, with its generating spheres
pipe surface: directrix is a helix, with generating spheres
pipe surface: directrix is a helix

In geometry and topology, a channel or canal surface is a surface formed as the envelope of a family of spheres whose centers lie on a space curve, its directrix. If the radii of the generating spheres are constant, the canal surface is called a pipe surface. Simple examples are:

Canal surfaces play an essential role in descriptive geometry, because in case of an orthographic projection its contour curve can be drawn as the envelope of circles.

  • In technical area canal surfaces can be used for blending surfaces smoothly.

YouTube Encyclopedic

  • 1/5
    Views:
    16 742
    5 913 274
    673 107
    4 957
    3 914 521
  • Astroid-(Area,Volume,surface area,perimeter):Application connected With Standard Curves
  • But why is a sphere's surface area four times its shadow?
  • How to Find the Surface Area of a Rectangular Prism | Math with Mr. J
  • BET Surface Area Analysis
  • This Is What The Surface Of Venus Sounds Like! Venera 14 Sound Recording 1982 (4K UHD)

Transcription

Envelope of a pencil of implicit surfaces

Given the pencil of implicit surfaces

,

two neighboring surfaces and intersect in a curve that fulfills the equations

and .

For the limit one gets . The last equation is the reason for the following definition.

  • Let be a 1-parameter pencil of regular implicit surfaces ( being at least twice continuously differentiable). The surface defined by the two equations

is the envelope of the given pencil of surfaces.[1]

Canal surface

Let be a regular space curve and a -function with and . The last condition means that the curvature of the curve is less than that of the corresponding sphere. The envelope of the 1-parameter pencil of spheres

is called a canal surface and its directrix. If the radii are constant, it is called a pipe surface.

Parametric representation of a canal surface

The envelope condition

of the canal surface above is for any value of the equation of a plane, which is orthogonal to the tangent of the directrix. Hence the envelope is a collection of circles. This property is the key for a parametric representation of the canal surface. The center of the circle (for parameter ) has the distance (see condition above) from the center of the corresponding sphere and its radius is . Hence

where the vectors and the tangent vector form an orthonormal basis, is a parametric representation of the canal surface.[2]

For one gets the parametric representation of a pipe surface:

pipe knot
canal surface: Dupin cyclide

Examples

a) The first picture shows a canal surface with
  1. the helix as directrix and
  2. the radius function .
  3. The choice for is the following:
.
b) For the second picture the radius is constant:, i. e. the canal surface is a pipe surface.
c) For the 3. picture the pipe surface b) has parameter .
d) The 4. picture shows a pipe knot. Its directrix is a curve on a torus
e) The 5. picture shows a Dupin cyclide (canal surface).

References

  • Hilbert, David; Cohn-Vossen, Stephan (1952). Geometry and the Imagination (2nd ed.). Chelsea. p. 219. ISBN 0-8284-1087-9.

External links

This page was last edited on 4 June 2022, at 06:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.