To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Cardiac PET
ICD-10-PCSC23G, C23Y
OPS-301 code3-741

Cardiac PET (or cardiac positron emission tomography) is a form of diagnostic imaging in which the presence of heart disease is evaluated using a PET scanner. Intravenous injection of a radiotracer is performed as part of the scan. Commonly used radiotracers are Rubidium-82, Nitrogen-13 ammonia and Oxygen-15 water.[1]

YouTube Encyclopedic

  • 1/5
    Views:
    3 828
    1 261
    7 293
    599
    695
  • Cardiac PET: Heading from Flow and Inflammation to Receptor Imaging
  • PET Imaging and Cardiac Stress Testing
  • Cardiac PET CT - Cardiology PowerPoint Presentation
  • FDG PET for Assessment Myocardial Viability
  • 17th Annual Virani Lectureship: Cardiac PET in 2018 (Mouaz Al-Mallah, MD) December 13, 2018

Transcription

Uses

Cardiac PET-CT scan can assess blood flow, metabolism, inflammation, innervation, and receptor density accurately. Besides, it is also useful to detect heart conditions such as coronary artery disease, cardiac amyloidosis, and cardiac sarcoidosis.[2]

Radiopharmaceuticals

Rubidium-82 is produced from the decay of Strontium-82 through electron capture in a generator. It is used to access the blood vessels supplying the heart. Strontium-82 has a half-life of 25.5 days while Rubidium-82 has a half-life of 76 seconds. Heart muscles can take up Rubidium-82 efficiently through sodium–potassium pump. Compared with Technetium-99m, Rubidium-82 has higher uptake by the heart muscles. However, Rubidium-82 has lower uptake by heart muscles when compared to N-13 ammonia. But the positron energy emitted by Rubidium-82 is higher than N-13 ammonia and Fluorodeoxyglucose (18F). On the other hand, the positron range (the distance travelled by a positron from its production site until its annihilation with an electron) is longer when compared to other radiopharmaceuticals, causing reduced image resolution.[2]

Myocardium has higher uptake for N-13 ammonia when compared to Rubidium-82, thus useful for myocardial perfusion imaging. However, its half-life is only 9.96 minutes. Therefore, on-site facilities such as cyclotron and radiochemistry synthesis facilities should be available. There may be patchy uptake if the subject has defects in lateral ventricular wall. N-13 ammonia may occasionally be degraded by liver, thus causing reduced visibility of the inferior wall of the heart. N-13 ammonia uptake by the lungs is minimal.[2]

Indications

Requirements

  • Facility: taking into consideration clinical workflow, as well as regulatory requirements such as requisite shielding from radiation exposure
  • Capital equipment: PET or PET/CT scanner
  • Radiopharmaceutical: Rubidium-82 generator system or close access to cyclotron produced isotopes such as Nitrogen-13 ammonia
  • Personnel: including specially trained physician, radiographers, radiation safety supervisors and optional nursing support
  • Operations: stress test monitoring, as well as emergency response equipment, processing and review workstations, administrative and support personnel are additional considerations

References

  1. ^ Ghosh, N; Rimoldi OE; Beanlands RS; Camici PG (December 2010). "Assessment of myocardial ischaemia and viability: role of positron emission tomography". European Heart Journal. 31 (24): 2984–2995. doi:10.1093/eurheartj/ehq361. PMID 20965888.
  2. ^ a b c Di Carli, Marcelo F.; Dondi, Maurizio; Giubbini, Raffaele; Paez, Diana, eds. (2022). IAEA Atlas of Cardiac PET/CT: A Case-Study Approach. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-64499-7. ISBN 978-3-662-64498-0. S2CID 248368314.


This page was last edited on 29 November 2023, at 12:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.