To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

CFU-E stands for Colony Forming Unit-Erythroid.[1] It arises from CFU-GEMM (via BFU-E,[2] which stands for "erythroid burst-forming units"[3]) and gives rise to proerythroblasts.

Mouse CFU-E colonies stained on Day 3 with Diaminobenzidine for hemoglobin

YouTube Encyclopedic

  • 1/3
    Views:
    116 794
    49 353
    61 016
  • CFU: Colony Forming Unit & cfu/ml calculation
  • Medical School - Anemia Made Easy
  • Los Errores de la Teoría Keynesiana por Juan Ramón Rallo

Transcription

Murine CFU-E assay

CFU-E is a stage of erythroid development between the BFU-E stage and the pro-erythroblast stage. CFU-E colony assay is designed to detect how many colony-forming-units of erythroid lineage there are in a hematopoietic tissue (bone marrow, spleen, or fetal liver), which may be reflective of the organism’s demand for oxygen delivery to the tissues or a hematopoietic disorder.

Early erythroid progenitors are found at a quite low frequency relative to later stages of erythroid differentiation, such as the pro-erythroblast and the basophilic erythroblast stages which can be detected by flowcytometry directly ex-vivo.[4] Furthermore, unlike for the pro-erythroblast and later stages of erythroid development, no truly reliable and unique positive flow-cytometric markers exist, though it is possible to use negative exclusion markers to deplete a cell population of other precursors and differentiated cells by cell sorting, thus greatly enriching it for the CFU-E activity.[5] CFU-E cells express Epo receptor, c-Kit (Stem cell factor receptor), transferrin receptor (CD71+), and are Ter119(glycophorin-A associated antigen)-negative. For the above reasons, the CFU-E assay, as inefficient and variable as it can often be, is still in use today.

Cells at the CFU-E stage express some erythropoietin receptor (EpoR), and thus can be induced to terminally differentiate in vitro in 2–3 days in the presence of only erythropoietin (Epo) (together with the basic contents of culture media: FBS, BSA in IMDM). Methylcellulose is a semisolid media additive that allows an investigator to stain (with diaminobenzidine reagent for hemoglobin) and then count individual colonies, each arising from a single plated progenitor that is at the CFU-E stage. By day 2 from the time of plating, each CFU-E colony will contain between 8 (minimum) and 64 hemoglobinized cells most of which are in their end-stage of erythroid differentiation. It is possible to see a small spectrum of hemoglobinization level and possibly cell size, indicating that some cells in the colony have achieved the end-stage faster than others.

Cell number in a colony is important because pro-erythroblast stage is also Epo-responsive (expresses Epo receptor), but the proliferative capacity of these cells is not as high, thus yielding a colony with fewer than 8 cells. Likewise, an earlier stage of erythroid differentiation may also yield colonies in Epo-only medium, but these colonies would likely be smaller and/or not hemoglobinized, since the stages before the CFU-E stage (MEP and BFU-E) require other factors (IL-3 etc) and more time for growth that will also delay the terminal differentiation and hemoglobinization.

References

  1. ^ Miller, Cindy L.; Dykstra, Brad; Eaves, Connie J. (2008). "Characterization of Mouse Hematopoietic Stem and Progenitor Cells". Current Protocols in Immunology. 80 (1): 22B.2.1–22B.2.31. doi:10.1002/0471142735.im22b02s80. ISSN 1934-368X. PMID 18432636.
  2. ^ Wu H, Liu X, Jaenisch R, Lodish HF (October 1995). "Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor". Cell. 83 (1): 59–67. doi:10.1016/0092-8674(95)90234-1. PMID 7553874.
  3. ^ Marley SB, Lewis JL, Goldman JM, Gordon MY (June 1996). "Abnormal kinetics of colony formation by erythroid burst-forming units (BFU-E) in chronic myeloid leukaemia". Br. J. Haematol. 93 (4): 878–83. doi:10.1046/j.1365-2141.1996.d01-1738.x. PMID 8703820.
  4. ^ Socolovsky, Merav; Nam, Hyung-song; Fleming, Mark D.; Haase, Volker H.; Brugnara, Carlo; Lodish, Harvey F. (2001-12-01). "Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts". Blood. 98 (12): 3261–3273. doi:10.1182/blood.V98.12.3261. ISSN 0006-4971.
  5. ^ Terszowski, Grzegorz; Waskow, Claudia; Conradt, Peter; Lenze, Dido; Koenigsmann, Jessica; Carstanjen, Dirk; Horak, Ivan; Rodewald, Hans-Reimer (2005-03-01). "Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E)". Blood. 105 (5): 1937–1945. doi:10.1182/blood-2004-09-3459. ISSN 0006-4971.

External links

This page was last edited on 12 August 2023, at 13:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.