To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bromide peroxidase

From Wikipedia, the free encyclopedia

Bromide peroxidase (EC 1.11.1.18, bromoperoxidase, haloperoxidase (ambiguous), eosinophil peroxidase) is a family of enzymes with systematic name bromide:hydrogen-peroxide oxidoreductase. These enzymes catalyse the following chemical reaction:[1][2][3]

HBr + H2O2 HOBr + H2O

The HOBr is a potent brominating agent. The many organobromine compounds observed in marine environments are the products of reaction with this oxidized form of bromine.

Bromo peroxidases of red and brown marine algae (Rhodophyta and Phaeophyta) contain vanadate (vanadium bromoperoxidase). Otherwise vanadium is unusual cofactor in biology.[4] By virtue of this family of enzymes, a variety of brominated natural products have been isolated from marine sources.

Related chloroperoxidase enzymes effect chlorination. In the nomenclature of haloperoxidase, bromoperoxidases classically are unable to oxidize chloride at all. For example, eosinophil peroxidase appears to prefer bromide over chloride, yet is not considered a bromoperoxidase because it is able to use chloride.

Muricidae (was Murex) spp. snails have a bromoperoxidase used to produce Tyrian purple dye. The enzyme is very specific to bromide and physically stable, but has not been characterized as to its active site metal. As of 2019, no specific gene has been assigned to such an enzyme in the snail genome.[5] Such an activity is probably provided by symbiotic Bacillus bacteria instead.[6] The identified enzyme belongs to the alpha/beta hydrolase superfamily; a structure for a similar bromoperoxidase is available as PDB: 3FOB​. It runs on a catalytic triad of Ser 99, Asp 229 and His 258 and does not require metal cofactors.[7]

Additional reading

  • De Boer, E.; Tromp, M.G.M.; Plat, H.; Krenn, G.E.; Wever, R (1986). "Vanadium(v) as an essential element for haloperoxidase activity in marine brown-algae - purification and characterization of a vanadium(V)-containing bromoperoxidase from Laminaria saccharina". Biochim. Biophys. Acta. 872 (1–2): 104–115. doi:10.1016/0167-4838(86)90153-6.
  • Tromp MG, Olafsson G, Krenn BE, Wever R (September 1990). "Some structural aspects of vanadium bromoperoxidase from Ascophyllum nodosum". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1040 (2): 192–8. doi:10.1016/0167-4838(90)90075-q. PMID 2400770.
  • Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN, Littlechild JA (June 2000). "Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis". Journal of Molecular Biology. 299 (4): 1035–49. doi:10.1006/jmbi.2000.3806. PMID 10843856.
  • Carter-Franklin JN, Butler A (November 2004). "Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products". Journal of the American Chemical Society. 126 (46): 15060–6. doi:10.1021/ja047925p. PMID 15548002.
  • Ohshiro T, Littlechild J, Garcia-Rodriguez E, Isupov MN, Iida Y, Kobayashi T, Izumi Y (June 2004). "Modification of halogen specificity of a vanadium-dependent bromoperoxidase". Protein Science. 13 (6): 1566–71. doi:10.1110/ps.03496004. PMC 2279980. PMID 15133166.

References

  1. ^ Butler, Alison.; Walker, J. V. (1993). "Marine haloperoxidases". Chemical Reviews. 93 (5): 1937–1944. doi:10.1021/cr00021a014.
  2. ^ Latham, Jonathan; Brandenburger, Eileen; Shepherd, Sarah A.; Menon, Binuraj R. K.; Micklefield, Jason (2018). "Development of Halogenase Enzymes for Use in Synthesis". Chemical Reviews. 118 (1): 232–269. doi:10.1021/acs.chemrev.7b00032. PMID 28466644.
  3. ^ Vaillancourt, Frédéric H.; Yeh, Ellen; Vosburg, David A.; Garneau-Tsodikova, Sylvie; Walsh, Christopher T. (2006). "Nature's Inventory of Halogenation Catalysts: Oxidative Strategies Predominate". Chemical Reviews. 106 (8): 3364–3378. doi:10.1021/cr050313i. PMID 16895332.
  4. ^ Butler, A., "Vanadium haloperoxidases", Current Opinion in Chemical Biology, 1998, 2, 279-285.
  5. ^ Benkendorff, K (23 April 2013). "Natural product research in the Australian marine invertebrate Dicathais orbita". Marine Drugs. 11 (4): 1370–98. doi:10.3390/md11041370. PMC 3705410. PMID 23612370.
  6. ^ Ngangbam, AK; Mouatt, P; Smith, J; Waters, DLE; Benkendorff, K (3 May 2019). "Bromoperoxidase Producing Bacillus spp. Isolated from the Hypobranchial Glands of a Muricid Mollusc Are Capable of Tyrian Purple Precursor Biogenesis". Marine Drugs. 17 (5): 264. doi:10.3390/md17050264. PMC 6562550. PMID 31058830. Genbank AKQ77155.1.
  7. ^ "Deposit 3FOB/IDP00046". Center for Structural Genomics of Infectious Diseases. Retrieved 31 May 2019.

External links

This page was last edited on 3 December 2023, at 08:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.