To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bouba/kiki effect

From Wikipedia, the free encyclopedia

A spiky geometric shape (left) and a rounded geometric shape (right)
This picture is used as a test to demonstrate that people may not attach sounds to shapes arbitrarily. When given the names "kiki" and "bouba", many cultural and linguistic communities worldwide robustly tend to label the shape on the left "kiki" and the one on the right "bouba".

The bouba/kiki effect, or kiki/bouba effect, is a non-arbitrary mental association between certain speech sounds and certain visual shapes. Most narrowly, it is the tendency for people, when presented with the nonsense words bouba /ˈbbə/ and kiki /ˈkk/, to associate bouba with a rounded shape and kiki with a spiky shape. Its discovery dates back to the 1920s, when psychologists documented experimental participants as connecting nonsense words to shapes in consistent ways. There is a strong general tendency towards the effect worldwide; it has been robustly confirmed across a majority of cultures and languages in which it has been researched,[1] for example including among English-speaking American university students, Tamil speakers in India, speakers of certain languages with no writing system, young children, infants, and (though to a much lesser degree) the congenitally blind.[1] It has also been shown to occur with familiar names. The effect was investigated using fMRI in 2018.[2] The bouba/kiki effect is one form of sound symbolism.[3]

YouTube Encyclopedic

  • 1/5
    Views:
    1 694 905
    439
    964 048
    6 787
    696
  • What color is Tuesday? Exploring synesthesia - Richard E. Cytowic
  • Feeling Colours: Investigating Crossmodal Correspondences Between 3D Shapes, Colours and Emotions
  • Babies on the Brink
  • The Psychology of Business Names
  • 21: What words sound spiky across languages? Interview with Suzy Styles on psycholinguistics

Transcription

Imagine a world in which you see numbers and letters as colored even though they're printed in black, in which music or voices trigger a swirl of moving, colored shapes, in which words and names fill your mouth with unusual flavors. Jail tastes like cold, hard bacon while Derek tastes like earwax. Welcome to synesthesia, the neurological phenomenon that couples two or more senses in 4% of the population. A synesthete might not only hear my voice, but also see it, taste it, or feel it as a physical touch. Sharing the same root with anesthesia, meaning no sensation, synesthesia means joined sensation. Having one type, such as colored hearing, gives you a 50% chance of having a second, third, or fourth type. One in 90 among us experience graphemes, the written elements of language, like letters, numerals, and punctuation marks, as saturated with color. Some even have gender or personality. For Gail, 3 is athletic and sporty, 9 is a vain, elitist girl. By contrast, the sound units of language, or phonemes, trigger synestetic tastes. For James, college tastes like sausage, as does message and similar words with the -age ending. Synesthesia is a trait, like having blue eyes, rather than a disorder because there's nothing wrong. In fact, all the extra hooks endow synesthetes with superior memories. For example, a girl runs into someone she met long ago. "Let's see, she had a green name. D's are green: Debra, Darby, Dorothy, Denise. Yes! Her name is Denise!" Once established in childhood, pairings remain fixed for life. Synesthetes inherit a biological propensity for hyperconnecting brain neurons, but then must be exposed to cultural artifacts, such as calendars, food names, and alphabets. The amazing thing is that a single nucleotide change in the sequence of one's DNA alters perception. In this way, synesthesia provides a path to understanding subjective differences, how two people can see the same thing differently. Take Sean, who prefers blue tasting food, such as milk, oranges, and spinach. The gene heightens normally occurring connections between the taste area in his frontal lobe and the color area further back. But suppose in someone else that the gene acted in non-sensory areas. You would then have the ability to link seemingly unrelated things, which is the definition of metaphor, seeing the similar in the dissimilar. Not surprisingly, synesthesia is more common in artists who excel at making metaphors, like novelist Vladimir Nabokov, painter David Hockney, and composers Billy Joel and Lady Gaga. But why do the rest of us non-synesthetes understand metaphors like "sharp cheese" or "sweet person"? It so happens that sight, sound, and movement already map to one another so closely, that even bad ventriloquists convince us that the dummy is talking. Movies, likewise, can convince us that the sound is coming from the actors' mouths rather than surrounding speakers. So, inwardly, we're all synesthetes, outwardly unaware of the perceptual couplings happening all the time. Cross-talk in the brain is the rule, not the exception. And that sounds like a sweet deal to me!

Research

Discovery

This effect was first observed by Georgian psychologist Dimitri Uznadze in a 1924 paper.[4][non-primary source needed] He conducted an experiment with 10 participants who were given a list with nonsense words, shown six drawings for five seconds each, then instructed to pick a name for the drawing from the list of given words. He describes the different "strategies" participants developed to match words to drawings and quotes their reasoning. He also describes situations where participants described very specific forms that they associated with a nonsense word, without reference to the shown drawings. He develops a theory of four factors that influence the way names for objects are decided.

In total, there were 42 words. For one particular drawing, 45% picked the same word. For three others, the percentages were 40%. Uznadze points out that this is significantly more overlap than one could expect, given the high number of possible words. He speculates that there must therefore be certain regularities "which the human soul follows in the process of name-giving".

German American psychologist Wolfgang Köhler referred to Uznadze's experiment in a 1929 book[5] which showed two forms and asked readers which shape was called "takete" and which was called "maluma". Although he does not say so outright, Köhler implies that there is a strong preference to pair the jagged shape with "takete" and the rounded shape with "maluma".[6]

Extension to other contexts

In 2001, V. S. Ramachandran and Edward Hubbard repeated Köhler's experiment using the words "kiki" and "bouba" and asked American college undergraduates and Tamil speakers in India, "Which of these shapes is bouba and which is kiki?" In both groups, 95% to 98% selected the curvy shape as "bouba" and the jagged one as "kiki", suggesting that the human brain somehow attaches abstract meanings to the shapes and sounds consistently.[7][failed verificationsee discussion]

Daphne Maurer and colleagues showed that even children as young as 212 years old may show this preference.[8] More recent work by Ozge Ozturk and colleagues in 2013 showed that even 4-month-old infants have the same sound–shape mapping biases as adults and toddlers.[9] Infants are able to differentiate between congruent trials (pairing an angular shape with "kiki" or a curvy shape with "bubu") and incongruent trials (pairing a curvy shape with "kiki" or an angular shape with "bubu"). Infants looked longer at incongruent pairings than at congruent pairings. Infants' mapping was based on the combination of consonants and vowels in the words, and neither consonants nor vowels alone sufficed for mapping. These results suggest that some sound–shape mappings precede language learning, and may in fact aid in language learning by establishing a basis for matching labels to referents and narrowing the hypothesis space for young infants. Adults in this study, like infants, used a combination of consonant and vowel information to match the labels they heard with the shapes they saw. However, this was not the only strategy that was available to them. Adults, unlike infants, were also able to use consonant information alone and vowel information alone to match the labels to the shapes, albeit less frequently than the consonant–vowel combination. When vowels and consonants were put in conflict, adults used consonants more often than vowels.

The effect has also been shown to emerge in other contexts, such as when words are paired with evaluative meanings (with "bouba" words associated with positive concepts and "kiki" words associated with negative concepts)[10] or when the words to be paired are existing first names, suggesting that some familiarity with the linguistic stimuli does not eliminate the effect. A study showed that individuals will pair names such as "Molly" with round silhouettes, and names such as "Kate" with sharp silhouettes. Moreover, individuals will associate different personality traits with either group of names (e.g., easygoingness with "round names"; determination with "sharp names"). This may hint at a role of abstract concepts in the effect.[11]

Contexts where the effect is smaller or absent

Other research suggests that this effect does not occur in all communities,[12] and it appears that the effect breaks if the sounds do not make licit words in the language.[13] The bouba/kiki effect seems to be dependent on a long sensitive period, with high visual capacities in childhood being necessary for its typical development. Although the congenitally blind have been reported to show a bouba/kiki effect, they show a much smaller one for touched shapes than sighted individuals do for visual shapes.[14][15]

Languages where the effect is smaller or absent

Studies show that speakers of certain languages have notably failed to show the effect, namely including Mandarin Chinese, Turkish, and Romanian.[1]

Neuroscience

In 2019, Nathan Peiffer-Smadja and Laurent Cohen published the first study using fMRI to explore the bouba/kiki effect.[2] They found that prefrontal activation is stronger to mismatching (bouba with spiky shape) than to matching (bouba with round shape) stimuli. A subsequent study by Kelly McCormick and colleagues reported a similar pattern of greater activation for mismatched word-shape stimuli, but with most activity in parietal regions including the intraparietal sulcus and supramarginal gyrus, regions known to play a role in sensory association and perceptual-motor processing.[16] Peiffer-Smadja and Cohen also found that sound-shape matching also influences activations in the auditory and visual cortices, suggesting an effect of matching at an early stage in sensory processing.[2]

Implications for understanding language

Ramachandran and Hubbard suggest that the kiki/bouba effect has implications for the evolution of language, because it suggests that the naming of objects is not completely arbitrary.[7]: 17  The rounded shape may most commonly be named "bouba" because the mouth makes a more rounded shape to produce that sound while a more taut, angular mouth shape is needed to make the sounds in "kiki".[17] Alternatively, the distinction may be between coronal or dorsal consonants like /k/ and labial consonants like /b/.[18] Additionally, it was shown that it is not only different consonants (e.g., voiceless versus voiced) and different vowel qualities (e.g., /a/ versus /i/) that play a role in the effect, but also vowel quantity (long versus short vowels). In one study, participants rated words containing long vowels to refer to longer objects and short vowels to short objects, at least for languages that make a vowel length distinction.[19] The presence of these "synesthesia-like mappings" suggest that this effect may be the neurological basis for sound symbolism, in which sounds are non-arbitrarily mapped to objects and events in the world.[citation needed] Research has also indicated that the effect may be a case of ideasthesia,[20] a phenomenon in which activations of concepts (inducers) evoke perception-like experiences (concurrents). The name comes from the Greek idea and aisthesis, meaning "sensing concepts" or "sensing ideas", and was introduced by Danko Nikolić.[21]

See also

References

  1. ^ a b c Ćwiek, Aleksandra; Fuchs, Susanne; Draxler, Christoph; Asu, Eva Liina; Dediu, Dan; Hiovain, Katri; Kawahara, Shigeto; Koutalidis, Sofia; Krifka, Manfred; Lippus, Pärtel; Lupyan, Gary; Oh, Grace E.; Paul, Jing; Petrone, Caterina; Ridouane, Rachid; Reiter, Sabine; Schümchen, Nathalie; Szalontai, Ádám; Ünal-Logacev, Özlem; Zeller, Jochen; Perlman, Marcus; Winter, Bodo (2022). "The bouba/Kiki effect is robust across cultures and writing systems". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1841). doi:10.1098/rstb.2020.0390. PMC 8591387. PMID 34775818.
  2. ^ a b c Peiffer-Smadja, Nathan; Cohen, Laurent (2019-02-01). "The cerebral bases of the bouba-kiki effect". NeuroImage. 186: 679–689. doi:10.1016/j.neuroimage.2018.11.033. ISSN 1053-8119. PMID 30503933. S2CID 54164828.
  3. ^ Margiotoudi Konstantina and Pulvermüller Friedemann (2020). "Action sound–shape congruencies explain sound symbolism". Scientific Reports. 10 (1): 12706. Bibcode:2020NatSR..1012706M. doi:10.1038/s41598-020-69528-4. PMC 7392762. PMID 32728096. ProQuest 2428279185.
  4. ^ Dimitri Usnadze. "Ein experimenteller Beitrag zum Problem der psychologischen Grundlagen der Namengebung" (PDF). bard.edu (in German). Retrieved 18 April 2023.
  5. ^ Köhler, Wolfgang (1929). Gestalt Psychology. New York: Liveright.
  6. ^ Köhler, Wolfgang (1947). Gestalt Psychology (2nd ed.). New York: Liveright. p. 133.
  7. ^ a b Ramachandran, V.S. & Hubbard, E.M. (2001). "Synaesthesia: A window into perception, thought and language" (PDF). Journal of Consciousness Studies. 8 (12): 3–34. Archived from the original (PDF) on 2011-08-13. Retrieved 2011-10-20.
  8. ^ Maurer, Daphne; Pathman, Thanujeni & Mondloch, Catherine J. (2006). "The shape of boubas: Sound-shape correspondences in toddlers and adults" (PDF). Developmental Science. 9 (3): 316–322. doi:10.1111/j.1467-7687.2006.00495.x. PMID 16669803. S2CID 7297731. Archived from the original (PDF) on 2011-07-23. Retrieved 2011-06-19.
  9. ^ Ozturk, Ozge; Krehm, Madelaine; Vouloumanos, Athena (2013). "Sound symbolism in infancy: Evidence for sound–shape cross-modal correspondences in 4-month-olds" (PDF). Journal of Experimental Child Psychology. 114 (2): 173–186. doi:10.1016/j.jecp.2012.05.004. PMID 22960203. S2CID 7274252. Archived from the original (PDF) on 2020-08-17. Retrieved 2019-09-24.
  10. ^ Bross, Fabian (2018). "The Good, the Bad, the Bouba, and the Kiki. Cross-Modal Correspondences Between Evaluative Meanings, Speech-Sounds, and Object Shapes". 14th conference "Phonetics & Phonology in the German-Speaking World". University of Vienna. doi:10.13140/RG.2.2.11463.14240.
  11. ^ Sidhu, David M.; Pexman, Penny M. (2015-05-27). "What's in a Name? Sound Symbolism and Gender in First Names". PLOS ONE. 10 (5): e0126809. Bibcode:2015PLoSO..1026809S. doi:10.1371/journal.pone.0126809. ISSN 1932-6203. PMC 4446333. PMID 26016856.
  12. ^ Rogers, Susan K.; Ross, Abraham S. (1975). "A cross-cultural test of the maluma–takete phenomenon". Perception. 4 (1): 105–106. doi:10.1068/p040105. PMID 1161435. S2CID 30045028.
  13. ^ Styles, Suzy; Gawne, Lauren (2017). "When Does Maluma/Takete Fail? Two Key Failures and a Meta-Analysis Suggest That Phonology and Phonotactics Matter". i-Perception. 8 (4): 204166951772480. doi:10.1177/2041669517724807. PMC 5574486. PMID 28890777.
  14. ^ Fryer, Louise; Freeman, Jonathan & Pring, Linda (2014). "Touching words is not enough: How visual experience influences haptic–auditory associations in the "Bouba–Kiki" effect" (PDF). Cognition. 132 (2): 164–173. doi:10.1016/j.cognition.2014.03.015. PMID 24809744. S2CID 29605784.
  15. ^ Hamilton-Fletcher, Giles; Pisanski, Katarzyna; Reby, David; Stefańczyk, Michał; Ward, Jamie & Sorokowska, Agnieszka (2018). "The role of visual experience in the emergence of cross-modal correspondences" (PDF). Cognition. 175: 114–121. doi:10.1016/j.cognition.2018.02.023. PMID 29502009. S2CID 3688492.
  16. ^ McCormick, Kelly; Lacey, Simon; Stilla, Randall; Nygaard, Lynne C.; Sathian, K. (2021-08-11). "Neural Basis of the Sound-Symbolic Crossmodal Correspondence Between Auditory Pseudowords and Visual Shapes". Multisensory Research. -1 (aop): 29–78. doi:10.1163/22134808-bja10060. ISSN 2213-4794. PMC 9196751. PMID 34384048. S2CID 236998825.
  17. ^ D'Onofrio, Annette (2013). "Phonetic Detail and Dimensionality in Sound-shape Correspondences: Refining the Bouba-Kiki Paradigm". Language and Speech. 57 (3): 367–393. CiteSeerX 10.1.1.1020.1352. doi:10.1177/0023830913507694. S2CID 51937587.
  18. ^ McCormick, Kelly; Kim, Jee Young; List, Sara; Nygaard, Lynne C. (2015). "Sound to Meaning Mappings in the Bouba-Kiki Effect" (PDF). Proceedings of the 37th Annual Conference of the Cognitive Science Society: Mind, Technology, and Society: Pasadena, California, 23–25 July 2015. Austin, TX: Cognitive Science Society. pp. 1565–1570. ISBN 978-0-9911967-2-2. Archived from the original (PDF) on 2019-02-09. Retrieved 2019-02-08.
  19. ^ Bross, Fabian (2018). "Cognitive associations between vowel length and object size: A new feature contributing to a bouba/kiki effect". In Belz, M.; Mooshammer, C.; Fuchs, S.; Jannedy, S.; Rasskazova, O.; Zygis, M. (eds.). Proceedings of the Conference on Phonetics & Phonology in German-Speaking Countries. Vol. 13. Berlin: Humbold University. pp. 17–20.
  20. ^ Gómez Milán, E.; Iborra, O.; de Córdoba, M.J.; Juárez-Ramos, V.; Rodríguez Artacho, M.A.; Rubio, J.L. (2013). "The Kiki-Bouba effect: A case of personification and ideaesthesia". Journal of Consciousness Studies. 20 (1–2): 84–102.
  21. ^ Nikolić, Danko (2009). "Is synaesthesia actually ideaestesia? An inquiry into the nature of the phenomenon" (PDF). Proceedings of the Third International Congress on Synaesthesia, Science & Art.
This page was last edited on 3 April 2024, at 14:24
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.