To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Bismuth-209, 209Bi
General
Symbol209Bi
Namesbismuth-209, 209Bi, Bi-209
Protons (Z)83
Neutrons (N)126
Nuclide data
Natural abundance100%
Half-life (t1/2)2.01×1019 years[1]
Isotope mass208.9803986 Da
Spin9/2−
Excess energy−18258.461±2.4 keV
Binding energy7847.987±1.7 keV
Parent isotopes209Pb (β)
209Po (β+)
213At (α)
Decay products205Tl
Decay modes
Decay modeDecay energy (MeV)
Alpha emission3.1373
Isotopes of bismuth
Complete table of nuclides

Bismuth-209 (209Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number[2] of 126 neutrons,[2] and an atomic mass of 208.9803987 amu (atomic mass units). Primordial bismuth consists entirely of this isotope.

YouTube Encyclopedic

  • 1/5
    Views:
    2 857
    94 639
    5 188
    1 423 789
    2 516 103
  • How Many Alpha Particles Are Emitted Per Day by Bismuth
  • Why Bismuth is Actually Radioactive
  • What is BISMUTH?
  • Why Does Everything Decay Into Lead
  • What the Heck is Bismuth? (Growing Metal Crystals)

Transcription

Decay properties

Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that 209Bi undergoes alpha decay with a half-life of ≈19 exayears (1.9×1019, or 19 quintillion years),[3][4] over 109 times longer than the estimated age of the universe.[5] The heaviest nucleus considered to be stable is now lead-208 and the heaviest stable monoisotopic element is gold (gold-197).

Theory had previously predicted a half-life of 4.6×1019 years. It had been suspected to be radioactive for a long time.[6] The decay produces a 3.14 MeV alpha particle plus thallium-205.[3][4]

Bismuth-209 occurs in the neptunium series decay chain.

Bismuth-209 forms 205Tl:

209
83
Bi
205
81
Tl
+ 4
2
He
[7]

If perturbed, it would join in lead-bismuth neutron capture cycle from lead-206/207/208 to bismuth-209, despite low capture cross sections. Even thallium-205, the decay product of bismuth-209, reverts to lead when fully ionized.[8]

Due to its hugely long half-life, for nearly all applications 209Bi can be treated as non-radioactive. It is much less radioactive than human flesh, so it poses no real radiation hazard. Though 209Bi holds the half-life record for alpha decay, it does not have the longest known half-life of any nuclide; this distinction belongs to tellurium-128 (128Te) with a half-life estimated at 7.7 × 1024 years by double β-decay (double beta decay).[9][10][11]

The half-life of 209Bi was confirmed in 2012 by an Italian team in Gran Sasso who reported (2.01±0.08)×1019 years. They also reported an even longer half-life for alpha decay of 209Bi to the first excited state of 205Tl (at 204 keV), was estimated at 1.66×1021 years.[12] Even though this value is shorter than the half-life of 128Te, both alpha decays of 209Bi hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ~5.5×10−43 eV and ΔΕ~1.3×10−44 eV in application of the uncertainty principle[13] (double beta decay would produce energy lines only in neutrinoless transitions, which has not been observed yet).

Applications

Because all primordial bismuth is bismuth-209, bismuth-209 is used for all normal applications of bismuth, such as being used as a replacement for lead,[14][15] in cosmetics,[16][17] in paints,[18] and in several medicines such as Pepto-Bismol.[5][19][20] Alloys containing bismuth-209 such as bismuth bronze have been used for thousands of years.[21]

Synthesis of other elements

210Po can be manufactured by bombarding 209Bi with neutrons in a nuclear reactor.[22] Only around 100 grams of 210Po are produced each year.[23][22] 209Po and 208Po can be made through the proton bombardment of 209Bi in a cyclotron.[24] Astatine can also be produced by bombarding 209Bi with alpha particles.[25][26][27] Traces of 209Bi have also been used to create gold in nuclear reactors.[28][29]

209Bi has been used as a target for the creation of several isotopes of superheavy elements such as dubnium,[30][31][32][33] bohrium,[30][34] meitnerium,[35][36][37] roentgenium,[38][39][40] and nihonium.[41][42][43]

Formation

Primordial

Bismuth-209 is created in the final part of the s-process.[a]

In the red giant stars of the asymptotic giant branch, the s-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed,[44] and the latter quickly decays.[44] All elements heavier than it are formed in the r-process, or rapid process, which occurs during the first fifteen minutes of supernovas.[45][44] Bismuth-209 is also created during the r-process.[44]

Radiogenic

Some 209Bi was created radiogenically from the neptunium decay chain.[46] Neptunium-237 is an extinct radionuclide, but it can be found in traces in uranium ores because of neutron capture reactions.[46][47] Americium-241, which is used in smoke detectors,[48] decays to neptunium-237.

See also

Notes

  1. ^ Red horizontal lines with a circle in their right ends represent neutron captures; blue arrows pointing up-left represent beta decays; green arrows pointing down-left represent alpha decays; cyan/light-green arrows pointing down-right represent electron captures.
Lighter:
bismuth-208
Bismuth-209 is an
isotope of bismuth
Heavier:
bismuth-210
Decay product of:
astatine-213 (α)
'polonium-209 (β+)
lead-209 (β)'
Decay chain
of bismuth-209
Decays to:
'thallium-205 (α)'

References

  1. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  2. ^ a b Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707.
  3. ^ a b Dumé, Belle (2003-04-23). "Bismuth breaks half-life record for alpha decay". Physicsweb.
  4. ^ a b Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc; Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  5. ^ a b Kean, Sam (2011). The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements). New York/Boston: Back Bay Books. pp. 158–160. ISBN 978-0-316-051637.
  6. ^ Carvalho, H. G.; Penna, M. (1972). "Alpha-activity of 209
    Bi
    ". Lettere al Nuovo Cimento. 3 (18): 720. doi:10.1007/BF02824346. S2CID 120952231.
  7. ^ "Isotope data for americium-241 in the Periodic Table".
  8. ^ Takahashi, K; Boyd, R. N.; Mathews, G. J.; Yokoi, K. (October 1987). "Bound-state beta decay of highly ionized atoms". Physical Review C. 36 (4): 1522–1528. Bibcode:1987PhRvC..36.1522T. doi:10.1103/PhysRevC.36.1522. ISSN 0556-2813. OCLC 1639677. PMID 9954244. Retrieved 2016-11-20.
  9. ^ "Noble Gas Research". Archived from the original on 2011-09-28. Retrieved 2013-01-10. Tellurium-128 information and half-life. Accessed July 14, 2009.
  10. ^ Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. 729 (1). Atomic Mass Data Center: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
  11. ^ "WWW Table of Radioactive Isotopes: Tellurium". Nuclear Science Division, Lawrence Berkeley National Laboratory. 2008. Archived from the original on 2010-02-05. Retrieved 2010-01-16.
  12. ^ J.W. Beeman; et al. (2012). "First Measurement of the Partial Widths of 209Bi Decay to the Ground and to the First Excited States". Physical Review Letters. 108 (6): 062501. arXiv:1110.3138. Bibcode:2012PhRvL.108f2501B. doi:10.1103/PhysRevLett.108.062501. PMID 22401058. S2CID 118686992.
  13. ^ "Particle lifetimes from the uncertainty principle".
  14. ^ Hopper KD; King SH; Lobell ME; TenHave TR; Weaver JS (1997). "The breast: inplane x-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments". Radiology. 205 (3): 853–8. doi:10.1148/radiology.205.3.9393547. PMID 9393547.
  15. ^ Lohse, Joachim; Zangl, Stéphanie; Groß, Rita; Gensch, Carl-Otto; Deubzer, Otmar (September 2007). "Adaptation to Scientific and Technical Progress of Annex II Directive 2000/53/EC" (PDF). European Commission. Retrieved 11 September 2009.
  16. ^ Maile, Frank J.; Pfaff, Gerhard; Reynders, Peter (2005). "Effect pigments—past, present and future". Progress in Organic Coatings. 54 (3): 150. doi:10.1016/j.porgcoat.2005.07.003.
  17. ^ Pfaff, Gerhard (2008). Special effect pigments: Technical basics and applications. Vincentz Network GmbH. p. 36. ISBN 978-3-86630-905-0.
  18. ^ B. Gunter "Inorganic Colored Pigments” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
  19. ^ Madisch A, Morgner A, Stolte M, Miehlke S (December 2008). "Investigational treatment options in microscopic colitis". Expert Opinion on Investigational Drugs. 17 (12): 1829–37. doi:10.1517/13543780802514500. PMID 19012499. S2CID 72294495.
  20. ^ Merck Index, 11th Edition, 1299
  21. ^ Gordon, Robert B.; Rutledge, John W. (1984). "Bismuth Bronze from Machu Picchu, Peru". Science. 223 (4636). American Association for the Advancement of Science: 585–586. Bibcode:1984Sci...223..585G. doi:10.1126/science.223.4636.585. JSTOR 1692247. PMID 17749940. S2CID 206572055.
  22. ^ a b Roessler, G. (2007). "Why 210Po?" (PDF). Health Physics News. Vol. 35, no. 2. Health Physics Society. Archived (PDF) from the original on 2014-04-03. Retrieved 2019-06-20.
  23. ^ "Swiss study: Polonium found in Arafat's bones". Al Jazeera. Retrieved 2013-11-07.
  24. ^ Carvalho, F.; Fernandes, S.; Fesenko, S.; Holm, E.; Howard, B.; Martin, P.; Phaneuf, P.; Porcelli, D.; Pröhl, G.; Twining, J. (2017). The Environmental Behaviour of Polonium. Technical reports series. Vol. 484. Vienna: International Atomic Energy Agency. p. 22. ISBN 978-92-0-112116-5. ISSN 0074-1914.
  25. ^ Barton, G. W.; Ghiorso, A.; Perlman, I. (1951). "Radioactivity of Astatine Isotopes". Physical Review. 82 (1): 13–19. Bibcode:1951PhRv...82...13B. doi:10.1103/PhysRev.82.13. hdl:2027/mdp.39015086480574. (subscription required)
  26. ^ Larsen, R. H.; Wieland, B. W.; Zalutsky, M. R. J. (1996). "Evaluation of an Internal Cyclotron Target for the Production of 211At via the 209Bi (α,2n)211At reaction". Applied Radiation and Isotopes. 47 (2): 135–143. doi:10.1016/0969-8043(95)00285-5. PMID 8852627.
  27. ^ Nefedov, V. D.; Norseev, Yu. V.; Toropova, M. A.; Khalkin, Vladimir A. (1968). "Astatine". Russian Chemical Reviews. 37 (2): 87–98. Bibcode:1968RuCRv..37...87N. doi:10.1070/RC1968v037n02ABEH001603. S2CID 250775410. (subscription required)
  28. ^ Aleklett, K.; Morrissey, D.; Loveland, W.; McGaughey, P.; Seaborg, G. (1981). "Energy dependence of 209Bi fragmentation in relativistic nuclear collisions". Physical Review C. 23 (3): 1044. Bibcode:1981PhRvC..23.1044A. doi:10.1103/PhysRevC.23.1044.
  29. ^ Matthews, Robert (2 December 2001). "The Philosopher's Stone". The Daily Telegraph. Retrieved 22 September 2020.
  30. ^ a b Munzenberg; Hofmann, S.; Heßberger, F. P.; Reisdorf, W.; Schmidt, K. H.; Schneider, J. H. R.; Armbruster, P.; Sahm, C. C.; Thuma, B. (1981). "Identification of element 107 by α correlation chains". Z. Phys. A. 300 (1): 107–108. Bibcode:1981ZPhyA.300..107M. doi:10.1007/BF01412623. S2CID 118312056.
  31. ^ Hessberger, F. P.; Münzenberg, G.; Hofmann, S.; Agarwal, Y. K.; Poppensieker, K.; Reisdorf, W.; Schmidt, K.-H.; Schneider, J. R. H.; Schneider, W. F. W.; Schött, H. J.; Armbruster, P.; Thuma, B.; Sahm, C.-C.; Vermeulen, D. (1985). "The new isotopes 258105,257105,254Lr and 253Lr". Z. Phys. A. 322 (4): 4. Bibcode:1985ZPhyA.322..557H. doi:10.1007/BF01415134. S2CID 100784990.
  32. ^ F. P. Hessberger; Hofmann, S.; Ackermann, D.; Ninov, V.; Leino, M.; Münzenberg, G.; Saro, S.; Lavrentev, A.; Popeko, A.G.; Yeremin, A.V.; Stodel, Ch. (2001). "Decay properties of neutron-deficient isotopes 256,257Db,255Rf, 252,253Lr". Eur. Phys. J. A. 12 (1): 57–67. Bibcode:2001EPJA...12...57H. doi:10.1007/s100500170039. S2CID 117896888. Archived from the original on 2002-05-10.
  33. ^ Leppänen, A.-P. (2005). Alpha-decay and decay-tagging studies of heavy elements using the RITU separator (PDF) (Thesis). University of Jyväskylä. pp. 83–100. ISBN 978-951-39-3162-9. ISSN 0075-465X.
  34. ^ Nelson, S.; Gregorich, K.; Dragojević, I.; Garcia, M.; Gates, J.; Sudowe, R.; Nitsche, H. (2008). "Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction". Physical Review Letters. 100 (2): 22501. Bibcode:2008PhRvL.100b2501N. doi:10.1103/PhysRevLett.100.022501. PMID 18232860. S2CID 1242390.
  35. ^ Münzenberg, G.; et al. (1982). "Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109". Zeitschrift für Physik A. 309 (1): 89–90. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157. S2CID 120062541.
  36. ^ Münzenberg, G.; Hofmann, S.; Heßberger, F. P.; et al. (1988). "New results on element 109". Zeitschrift für Physik A. 330 (4): 435–436. Bibcode:1988ZPhyA.330..435M. doi:10.1007/BF01290131. S2CID 121364541.
  37. ^ Hofmann, S.; Heßberger, F. P.; Ninov, V.; et al. (1997). "Excitation function for the production of 265108 and 266109". Zeitschrift für Physik A. 358 (4): 377–378. Bibcode:1997ZPhyA.358..377H. doi:10.1007/s002180050343. S2CID 124304673.
  38. ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. (1995). "The new element 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192.
  39. ^ Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. (2002). "New results on elements 111 and 112". The European Physical Journal A. 14 (2): 147–157. Bibcode:2002EPJA...14..147H. doi:10.1140/epja/i2001-10119-x. S2CID 8773326.
  40. ^ Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. (2004). "Status of heavy element research using GARIS at RIKEN". Nuclear Physics A. 734: 101–108. Bibcode:2004NuPhA.734..101M. doi:10.1016/j.nuclphysa.2004.01.019.
  41. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  42. ^ Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
  43. ^ K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope, 278113, of the 113th Element". Journal of the Physical Society of Japan. 81 (10): 103201. arXiv:1209.6431. Bibcode:2012JPSJ...81j3201M. doi:10.1143/JPSJ.81.103201. S2CID 119217928.
  44. ^ a b c d Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics. 29 (4): 547–650. Bibcode:1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547.
  45. ^ Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.
  46. ^ a b Peppard, D. F.; Mason, G. W.; Gray, P. R.; Mech, J. F. (1952). "Occurrence of the (4n + 1) series in nature" (PDF). Journal of the American Chemical Society. 74 (23): 6081–6084. doi:10.1021/ja01143a074.
  47. ^ C. R. Hammond (2004). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9.
  48. ^ "Smoke Detectors and Americium". Nuclear Issues Briefing Paper. 35. Uranium Information Centre. May 2002. Archived from the original on 3 March 2008. Retrieved 2 September 2022.{{cite journal}}: CS1 maint: unfit URL (link)
This page was last edited on 17 May 2024, at 17:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.