To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bipartite realization problem

From Wikipedia, the free encyclopedia

The bipartite realization problem is a classical decision problem in graph theory, a branch of combinatorics. Given two finite sequences and of natural numbers with , the problem asks whether there is a labeled simple bipartite graph such that is the degree sequence of this bipartite graph.

YouTube Encyclopedic

  • 1/3
    Views:
    16 935
    14 256
    54 719
  • Bipartite Matching | Mice and Owls problem | Network Flow | Graph Theory
  • Bipartite Matching | Elementary Math problem | Network Flow | Graph Theory
  • Augmenting Paths - Georgia Tech - Computability, Complexity, Theory: Algorithms

Transcription

Solutions

The problem belongs to the complexity class P. This can be proven using the Gale–Ryser theorem, i.e., one has to validate the correctness of inequalities.

Other notations

The problem can also be stated in terms of zero-one matrices. The connection can be seen if one realizes that each bipartite graph has a biadjacency matrix where the column sums and row sums correspond to and . The problem is then often denoted by 0-1-matrices for given row and column sums. In the classical literature the problem was sometimes stated in the context of contingency tables by contingency tables with given marginals. A third formulation is in terms of degree sequences of simple directed graphs with at most one loop per vertex. In this case the matrix is interpreted as the adjacency matrix of such a directed graph. When are pairs of non-negative integers ((a1,b1), ..., (an,bn)) the indegree-outdegree pairs of a labeled directed graph with at most one loop per vertex?

Related problems

Similar problems describe the degree sequences of simple graphs and simple directed graphs. The first problem is the so-called graph realization problem. The second is known as the digraph realization problem. The bipartite realization problem is equivalent to the question, if there exists a labeled bipartite subgraph of a complete bipartite graph to a given degree sequence. The hitchcock problem asks for such a subgraph minimizing the sum of the costs on each edge which are given for the complete bipartite graph. A further generalization is the f-factor problem for bipartite graphs, i.e. for a given bipartite graph one searches for a subgraph possessing a certain degree sequence. The problem uniform sampling a bipartite graph to a fixed degree sequence is to construct a solution for the bipartite realization problem with the additional constraint that each such solution comes with the same probability. This problem was shown to be in FPTAS for regular sequences by Catherine Greenhill[1] (for regular bipartite graphs with a forbidden 1-factor) and for half-regular sequences by Erdős et al.[2] The general problem is still unsolved.

Citations

References

  • Gale, D. (1957). "A theorem on flows in networks". Pacific J. Math. 7 (2): 1073–1082. doi:10.2140/pjm.1957.7.1073.
  • Ryser, H. J. (1963). Combinatorial Mathematics. John Wiley & Sons.
  • Greenhill, Catherine (2011). "A polynomial bound on the mixing time of a Markov chain for sampling regular directed graphs". Electronic Journal of Combinatorics. 18 (1): 234. arXiv:1105.0457. Bibcode:2011arXiv1105.0457G. doi:10.37236/721. S2CID 11309590.
  • Erdős, P.L.; Kiss, S.Z.; Miklós, I.; Soukup, Lajos (2015). "Approximate Counting of Graphical Realizations". PLOS ONE. 10 (7): e0131300. arXiv:1301.7523. Bibcode:2015PLoSO..1031300E. doi:10.1371/journal.pone.0131300. PMC 4498913. PMID 26161994.
  • Erdős, Péter L.; Király, Zoltán; Miklós, István (May 2013). "On the Swap-Distances of Different Realizations of a Graphical Degree Sequence" (PDF). Combinatorics, Probability and Computing. 22 (3): 366–383. doi:10.1017/S0963548313000096. S2CID 5643528.
This page was last edited on 25 March 2024, at 01:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.