To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bioretrosynthesis

From Wikipedia, the free encyclopedia

Bioretrosynthesis is a technique for synthesizing organic chemicals from inexpensive precursors and evolved enzymes.[1] The technique builds on the retro-evolution hypothesis proposed in 1945 by geneticist Norman Horowitz.[2]

Technique

The technique works backwards from the target to identify a precursor molecule and an enzyme that converts it into the target, and then a second precursor that can produce the first and so on until a simple, inexpensive molecule becomes the beginning of the series.[1] For each precursor, the enzyme is evolved using induced mutations and natural selection to produce a more productive version. The evolutionary process can be repeated over multiple generations until acceptable productivity is achieved.[1] The process does not require high temperature, high pressure, the use of exotic catalysts or other elements that can increase costs.[1] The enzyme "optimizations" that increase the production of one precursor from another are cumulative in that the same precursor productivity improvements can potentially be leveraged across multiple target molecules.[1]

Didanosine

In 2014 the technique was used to produce the HIV drug didanosine:[2] a simpler molecule was identified that can be converted into didanosine when subjected to a specific chemical transformation in the presence of a specific enzyme.[2] The gene that creates the enzyme was then "copied", adding random mutations to each copy using ribokinase engineering.[2] The mutant genes were inserted into Escherichia coli bacteria and used to produce (now-mutant) enzymes. The enzymes were then mixed with the precursor and the mutant enzymes that produced the greatest amount of didanosine were retained and replicated. One mutant stimulated a 50x increase in didanosine production.[2] The first step was repeated, using the first precursor in place of didanosine, finding a yet simpler precursor and an enzyme to produce it. One mutated enzyme produced a 9,500x increase in nucleoside production.[2] A third retrogression allowed them to start with the simple and inexpensive sugar named dideoxyribose and produce didanosine in a three-step sequence.[2]

References

  1. ^ a b c d e "The bioretrosynthesis solution: shifting evolution into reverse to make cheaper drugs". KurzweilAI. 2014-04-09. doi:10.1038/nchembio.1494. Retrieved 2014-04-09.
    Birmingham, W. R.; Starbird, C. A.; Panosian, T. D.; Nannemann, D. P.; Iverson, T. M.; Bachmann, B. O. (2014). "Bioretrosynthetic construction of a didanosine biosynthetic pathway". Nature Chemical Biology. 10: 392–399. doi:10.1038/nchembio.1494. PMC 4017637. PMID 24657930.
  2. ^ a b c d e f g "Shifting evolution into reverse promises cheaper, greener way to make new drugs". ScienceDaily. doi:10.1038/nchembio.1494. Retrieved 2014-04-09.

External links

This page was last edited on 17 November 2022, at 07:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.