To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Alternating finite automaton

From Wikipedia, the free encyclopedia

In automata theory, an alternating finite automaton (AFA) is a nondeterministic finite automaton whose transitions are divided into existential and universal transitions. For example, let A be an alternating automaton.

  • For an existential transition , A nondeterministically chooses to switch the state to either or , reading a. Thus, behaving like a regular nondeterministic finite automaton.
  • For a universal transition , A moves to and , reading a, simulating the behavior of a parallel machine.

Note that due to the universal quantification a run is represented by a run tree. A accepts a word w, if there exists a run tree on w such that every path ends in an accepting state.

A basic theorem states that any AFA is equivalent to a deterministic finite automaton (DFA), hence AFAs accept exactly the regular languages.

An alternative model which is frequently used is the one where Boolean combinations are in disjunctive normal form so that, e.g., would represent . The state tt (true) is represented by in this case and ff (false) by . This representation is usually more efficient.

Alternating finite automata can be extended to accept trees in the same way as tree automata, yielding alternating tree automata.

YouTube Encyclopedic

  • 1/3
    Views:
    4 105
    17 556
    1 466
  • INITIAL STATE OF FINITE AUTOMATA
  • Finite automata to accept strings with even 0s and odd 1s.
  • how many dfa will accept universal language | TOC | THEORY OF COMPUTATION | AUTOMATA | part-24

Transcription

Formal definition

An alternating finite automaton (AFA) is a 5-tuple, , where

  • is a finite set of states;
  • is a finite set of input symbols;
  • is the initial (start) state;
  • is a set of accepting (final) states;
  • is the transition function.

For each string , we define the acceptance function by induction on the length of :

  • if , and otherwise;
  • .

The automaton accepts a string if and only if .

This model was introduced by Chandra, Kozen and Stockmeyer.[1]

State complexity

Even though AFA can accept exactly the regular languages, they are different from other types of finite automata in the succinctness of description, measured by the number of their states.

Chandra et al.[1] proved that converting an -state AFA to an equivalent DFA requires states in the worst case, though a DFA for the reverse language can be constructued with only states. Another construction by Fellah, Jürgensen and Yu.[2] converts an AFA with states to a nondeterministic finite automaton (NFA) with up to states by performing a similar kind of powerset construction as used for the transformation of an NFA to a DFA.

Computational complexity

The membership problem asks, given an AFA and a word , whether accepts . This problem is P-complete.[3] This is true even on a singleton alphabet, i.e., when the automaton accepts a unary language.

The non-emptiness problem (is the language of an input AFA non-empty?), the universality problem (is the complement of the language of an input AFA empty?), and the equivalence problem (do two input AFAs recognize the same language) are PSPACE-complete for AFAs[3]: Theorems 23, 24, 25 .

References

  1. ^ a b Chandra, Ashok K.; Kozen, Dexter C.; Stockmeyer, Larry J. (1981). "Alternation". Journal of the ACM. 28 (1): 114–133. doi:10.1145/322234.322243. ISSN 0004-5411.
  2. ^ Fellah, A.; Jürgensen, H.; Yu, S. (1990). "Constructions for alternating finite automata∗". International Journal of Computer Mathematics. 35 (1–4): 117–132. doi:10.1080/00207169008803893. ISSN 0020-7160.
  3. ^ a b Theorem 19 of Holzer, Markus; Kutrib, Martin (2011-03-01). "Descriptional and computational complexity of finite automata—A survey". Information and Computation. 209 (3): 456–470. doi:10.1016/j.ic.2010.11.013. ISSN 0890-5401.
This page was last edited on 22 November 2023, at 13:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.