To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Allyl acetate
Skeletal formula of allyl acetate
Ball-and-stick model of the allyl acetate molecule
Names
Preferred IUPAC name
Prop-2-enyl acetate[1]
Other names
2-Propenyl acetate
Allyl acetate
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.008.851 Edit this at Wikidata
EC Number
  • 209-734-8
RTECS number
  • AF1750000
UNII
UN number 2333
  • InChI=1S/C5H8O2/c1-3-4-7-5(2)6/h3H,1,4H2,2H3 ☒N
    Key: FWZUNOYOVVKUNF-UHFFFAOYSA-N ☒N
  • C=CCOC(C)=O
Properties
C5H8O2
Molar mass 100.117 g·mol−1
Appearance Colorless liquid
Density 0.928 g/cm3
Boiling point 103 °C (217 °F; 376 K)
slightly soluble
-56.7·10−6 cm3/mol
Hazards
GHS labelling:
GHS02: Flammable
GHS06: Toxic
GHS07: Exclamation mark
Danger
H225, H301, H312, H319, H330
P210, P233, P240, P241, P242, P243, P260, P264, P270, P271, P280, P284, P301+P310, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P320, P321, P322, P330, P337+P313, P363, P370+P378, P403+P233, P403+P235, P405, P501
374 °C (705 °F; 647 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Allyl acetate is an organic compound with formula C3H5OC(O)CH3. This colourless liquid is a precursor to especially allyl alcohol, which is a useful industrial intermediate. It is the acetate ester of allyl alcohol.

YouTube Encyclopedic

  • 1/1
    Views:
    993
  • Mod-05 Lec-23 Metal-allyls - η 3 complexes-fluxionality, reactivity

Transcription

Preparation

Allyl acetate is produced industrially by the gas phase reaction of propene in the presence of acetic acid using a palladium catalyst:[2][3]

C3H6 + CH3COOH + ½ O2 → CH2=CHCH2OCOCH3 + H2O

This method is advantageous because propene is inexpensive and a green chemical. Allyl alcohol is also produced primarily from allyl chloride, but production via the hydrolysis of allyl acetate route avoids the use of chlorine, and so is increasing in use.

Vinyl acetate is produced similarly, using ethylene in place of propene. These reactions are examples of acetoxylation. The palladium center is then re-oxidized by the O2 present. The mechanism for the acetoxylation follows a similar pathway, with propene forming a π-allyl bond on the palladium.[4]

Catalytic cycle for the production of Allyl Acetate.

Reactions and applications

Allyl acetate can be hydrolyzed to allyl alcohol:

CH2=CHCH2OCOCH3 + H2O → CH2=CHCH2OH + CH3COOH

Allyl alcohol is a precursor for some specialty polymers, mainly for drying oils. Allyl alcohol is also a precursor to synthetic glycerol. Epoxidation by hydrogen peroxide produces glycidol, which undergoes hydrolysis to glycerol.

CH2=CHCH2OH + HOOH → CH2OCHCH2OH + H2O
CH2OCHCH2OH + H2O → C3H5(OH)3

Synthetic glycerol tends to be used in cosmetics and toiletries whereas glycerol from the hydrolysis of fats is used in food.[5]

Substitution reactions

Substitution of the acetate group in allyl acetate using hydrogen chloride yields allyl chloride. Reaction with hydrogen cyanide over copper catalyst yields allyl cyanide.[6]

CH2=CHCH2OCOCH3 + HCl → CH2=CHCH2Cl + CH3COOH
CH2=CHCH2OCOCH3 + HCN → CH2=CHCH2CN + CH3COOH

Allyl chloride is generally produced directly by the chlorination of propene.

References

  1. ^ "Allyl acetate".
  2. ^ Harold Wittcoff; B. G. Reuben; Jeffrey S. Plotkin (2004). Industrial organic chemicals (Google Books excerpt). John Wiley & Sons. p. 212. ISBN 978-0-471-54036-6.
  3. ^ Ludger Krähling; Jürgen Krey; Gerald Jakobson; Johann Grolig; Leopold Miksche (2002). "Allyl Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_425. ISBN 978-3527306732.
  4. ^ M. R. Churchill; R. Mason (1964). "Molecular Structure of π-allyl-palladium acetate". Nature. 204 (4960): 777. Bibcode:1964Natur.204..777C. doi:10.1038/204777a0.
  5. ^ H. A. Wittcoff; B. G. Reuben; J. S. Plotkin (2004). "Chemicals and Polymers from Propylene". Industrial Organic Chemicals. John Wiley & Sons. pp. 195–214. ISBN 978-0-471-44385-8.
  6. ^ Ludger Krahling; et al. (2000). "Allyl Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a01_425. ISBN 9783527303854.
This page was last edited on 19 January 2024, at 13:42
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.