To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Alfred Wohl (3 October 1863 – 25 December 1939) was a German chemist. Several chemical reactions are named after him, including the Wohl degradation, Wohl–Aue reaction and the Wohl–Ziegler reaction.

YouTube Encyclopedic

  • 1/3
    Views:
    596
    439 011
    74 633
  • Wohl Ziegler Bromination - Named Reactions in Organic Chemistry
  • Protein: Chemistry for Understanding Nutrition by Milton Mills, MD
  • Early forensics and crime-solving chemists - Deborah Blum

Transcription

Life

Wohl studied chemistry at the University of Heidelberg from 1882 until 1886. He received his Ph.D 1886 for work on Hexamethylenetetramine with August Wilhelm von Hofmann. He became an assistant of Hermann Emil Fischer at the University of Berlin from 1886 until 1891, where he also received his habilitation. He became professor at the University of Berlin in 1901, but he left for the Technical University of Danzig in 1904. He retired because of antisemitic pressure in 1933, but worked in his lab until 1937. He emigrated to Sweden in 1938, where he died in 1939.

His son Kurt Wohl (1896–1962) – who also became a renowned chemical scientist – emigrated to Great Britain in 1939 and some years later to the United States.[1]

Work

His work in organic chemistry started with his PhD thesis on hexamine in 1886. Under the influence of Fischer, Wohl focused on sugar chemistry. Wohl arbitrarily defined the structure of (+)-glyceraldehyde to have the D-configuration, forming the basis for the D-L system. This was done before chemists had the ability to prove (+)-glyceraldehyde was, in fact, D-glyceraldehyde. Before the invention of x-ray crystallography the exact determination of the configuration at a chiral carbon atom was impossible.

D-glyceraldehyde
L-glyceraldehyde
D-glyceraldehyde
L-glyceraldehyde

With this starting point, all related chiral compounds could be chemically transformed into (−)- or (+)-glyceraldehyde. By employing only chemical transformations with retention of stereochemical configuration, such an unknown chiral compound could be assigned either a D- or an L-configuration.

The use of vanadium pentoxide for the catalytic oxidation with air of various substances became his most profitable invention. Similar catalysts are still used for the oxidation of naphthalene, anthraquinone and for the production of sulfuric acid from sulfur dioxide.

References

  1. ^ Kurt Wohl – His Life and Work www.researchgate.net, January 2003
  • Teresa Sokolowska, Romuald Piosik (2004). "Otto Ruff und Alfred Wohl. Professoren der 1904 gegründeten Königlichen Technischen Hochschule zu Danzig". Chemkon. 11 (2): 76–78. doi:10.1002/ckon.200410006.
This page was last edited on 9 April 2024, at 10:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.