To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

4D reconstruction

From Wikipedia, the free encyclopedia

In computer vision and computer graphics, 4D reconstruction is the process of capturing the shape and appearance of real objects along a temporal dimension.[1][2][3][4] This process can be accomplished by methods such as depth camera imaging,[1] photometric stereo, or structure from motion,[5] and is also referred to as spatio-temporal reconstruction.[4]

YouTube Encyclopedic

  • 1/3
    Views:
    441
    14 851
    2 473 188
  • Creating 3D models with your mobile phone
  • The 12 Weeks Scan: 3D and 4D Ultrasound
  • Face2Face: Real-time Face Capture and Reenactment of RGB Videos (CVPR 2016 Oral)

Transcription

4D Gaussian splatting

Extending the concept of 3D Gaussian Splatting, the 4D Gaussian Splatting incorporates a time component, allowing for dynamic scene rendering. It represents and renders dynamic scenes, with a focus on modeling complex motions while maintaining efficiency.[6] The method uses a HexPlane to connect different adjacent Gaussians, providing an accurate representation of position and shape deformations. By utilizing only a single set of canonical 3D Gaussians, and predictive analytics, the 4D Gaussian splatting method models how they move over different timestamps.[7]

Achievements of this technique include real-time rendering on dynamic scenes with high resolutions, while maintaining quality. It showcases potential applications for future developments in film and other media, although there are current limitations regarding the length of motion captured.[7]

See also

References

  1. ^ a b Dou, Mingsong, et al. "Fusion4d: Real-time performance capture of challenging scenes." ACM Transactions on Graphics (TOG) 35.4 (2016): 1-13.
  2. ^ Mustafa, Armin, et al. "Temporally coherent 4d reconstruction of complex dynamic scenes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
  3. ^ Oswald, Martin Ralf, Jan Stühmer, and Daniel Cremers. "Generalized connectivity constraints for spatio-temporal 3d reconstruction." European Conference on Computer Vision. Springer, Cham, 2014.
  4. ^ a b Dong, Jing, et al. "4D crop monitoring: Spatio-temporal reconstruction for agriculture." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.
  5. ^ Kyriakaki, Georgia, et al. "4D reconstruction of tangible cultural heritage objects from web-retrieved images." International Journal of Heritage in the Digital Era 3.2 (2014): 431-451.
  6. ^ Guanjun Wu; Taoran Yi; Jiemin Fang; Lingxi Xie; Xiaopeng Zhang; Wei Wei; Wenyu Liu; Qi Tian; Xinggang Wang (12 Oct 2023). "4D Gaussian Splatting for Real-Time Dynamic Scene Rendering". arXiv:2310.08528 [cs.CV].
  7. ^ a b Franzen, Carl. "Actors' worst fears come true? New 4D Gaussian splatting method captures human motion". venturebeat.com. VentureBeat. Retrieved October 18, 2023.

External links


This page was last edited on 23 December 2023, at 02:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.