To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

POLARBEAR
Part ofSimons Array Edit this on Wikidata
Location(s)Atacama Desert
Coordinates22°57′29″S 67°47′10″W / 22.958064°S 67.786222°W / -22.958064; -67.786222 Edit this at Wikidata
Altitude5,200 m (17,100 ft) Edit this at Wikidata
Wavelength148, 95 GHz (2.03, 3.16 mm)
Built2010–2012 (2010–2012) Edit this at Wikidata
First light10 January 2012 Edit this on Wikidata
Telescope stylecosmic microwave background experiment
radio telescope Edit this on Wikidata
Diameter2.5 m (8 ft 2 in) Edit this at Wikidata
Angular resolution3.5 arcminute Edit this on Wikidata
Websitebolo.berkeley.edu/polarbear/ Edit this at Wikidata
Location of POLARBEAR
 
Related media on Commons

POLARBEAR (POLARization of the Background Radiation)[1] is a cosmic microwave background polarization experiment located in the Atacama Desert of northern Chile in the Antofagasta Region. The POLARBEAR experiment is mounted on the Huan Tran Telescope (HTT) at the James Ax Observatory in the Chajnantor Science Reserve. The HTT is located near the Atacama Cosmology Telescope on the slopes of Cerro Toco at an altitude of nearly 5,200 m (17,100 ft).[2][3]

POLARBEAR was developed by an international collaboration which includes University of California, Berkeley, Lawrence Berkeley National Lab, University of Colorado at Boulder, University of California, San Diego, Imperial College, Astroparticle and Cosmology Laboratory of the University of Paris (2019), KEK (High Energy Accelerator Research Organization), McGill University, and Cardiff University.

YouTube Encyclopedic

  • 1/3
    Views:
    8 131
    5 185 421
    106 028
  • Preschool Science Experiment: Polar Bear Blubber
  • What If All The Ice Melted On Earth? ft. Bill Nye
  • All About Polar Bears for Kids: Polar Bears for Children - FreeSchool

Transcription

History

The instrument was first installed at the Combined Array for Research in Millimeter-wave Astronomy site near Westgard Pass in California (USA) for an engineering run in 2010. It was then moved to its final destination in the Atacama Desert in September 2011. POLARBEAR saw first light on January 10, 2012, and began its first observing season in April 2012.[4]

In October 2014, POLARBEAR published a measurement of B-mode polarization at 150 GHz.[5] These measurements focused on arcminute scale fluctuations likely sourced by gravitational lensing by intervening large-scale structure. Earlier in the year, the BICEP2 project published related measurements of degree-scale B-mode polarization, possibly sourced by primordial gravitational waves from cosmic inflation, but they could not rule out cosmic dust as a cause.

POLARBEAR's published measurements focused on a small but clean patch of the sky where galactic foregrounds should be subdominant to gravitational lensing B-modes. The POLARBEAR team was able to report that the measured B-mode polarization was of cosmic origin at a 97.2% confidence level by focusing their observing time on this small patch where they are highly sensitive to arcminute anisotropies. However, this observing strategy is insensitive to the larger degree-scale inflationary B-modes that BICEP2 and Keck Array have searched for. [6]

See also

References

  1. ^ Ade, Peter A. R.; et al. (2015). "POLARBEAR constraints on cosmic birefringence and primordial magnetic fields". Physical Review D. 92 (12): 123509. arXiv:1509.02461. doi:10.1103/PhysRevD.92.123509. S2CID 118546886.
  2. ^ Keating, B.; Moyerman, S.; Boettger, D.; Edwards, J.; Fuller, G.; Matsuda, F.; Miller, N.; Paar, H.; Rebeiz, G.; et al. (2011). "Ultra High Energy Cosmology with POLARBEAR". 1110: 2101. arXiv:1110.2101. Bibcode:2011arXiv1110.2101K. {{cite journal}}: Cite journal requires |journal= (help)
  3. ^ Lee, Adrian T.; Tran, Huan; Ade, Peter; Arnold, Kam; Borrill, Julian; Dobbs, Matt A.; Errard, Josquin; Halverson, Nils; Holzapfel, William L.; Howard, Jacob; Jaffe, Andrew; Keating, Brian; Kermish, Zigmund; Linder, Eric; Miller, Nathan; Myers, Mike; Niarchou, Anastasia; Paar, Hans; Reichardt, Christian; Spieler, Helmuth; Steinbach, Bryan; Stompor, Radek; Tucker, Carole; Quealy, Erin; Richards, Paul L.; Zahn, Oliver; Kodama, Hideo; Ioka, Kunihito (28 August 2008). "POLARBEAR: Ultra-high Energy Physics with Measurements of CMB Polarization". AIP Conference Proceedings. 1040: 66. doi:10.1063/1.2981555.
  4. ^ "First Light in Chile!". University of California Berkeley Department of Physics. Retrieved March 5, 2012.
  5. ^ The Polarbear Collaboration (October 2014). "A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR". The Astrophysical Journal. 794 (2): 171. arXiv:1403.2369. Bibcode:2014ApJ...794..171P. doi:10.1088/0004-637X/794/2/171. S2CID 118598825.
  6. ^ "POLARBEAR project offers clues about origin of universe's cosmic growth spurt". Christian Science Monitor. October 21, 2014.

External links

This page was last edited on 20 February 2023, at 14:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.