To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Ozsváth–Schücking metric

From Wikipedia, the free encyclopedia

The Ozsváth–Schücking metric, or the Ozsváth–Schücking solution, is a vacuum solution of the Einstein field equations. The metric was published by István Ozsváth and Engelbert Schücking in 1962.[1] It is noteworthy among vacuum solutions for being the first known solution that is stationary, globally defined, and singularity-free but nevertheless not isometric to the Minkowski metric. This stands in contradiction to a claimed strong Mach principle, which would forbid a vacuum solution from being anything but Minkowski without singularities, where the singularities are to be construed as mass as in the Schwarzschild metric.[2]

With coordinates , define the following tetrad:

It is straightforward to verify that e(0) is timelike, e(1), e(2), e(3) are spacelike, that they are all orthogonal, and that there are no singularities. The corresponding proper time is

The Riemann tensor has only one algebraically independent, nonzero component

which shows that the spacetime is Ricci flat but not conformally flat. That is sufficient to conclude that it is a vacuum solution distinct from Minkowski spacetime. Under a suitable coordinate transformation, the metric can be rewritten as

and is therefore an example of a pp-wave spacetime.

References

  1. ^ Ozsváth, I.; Schücking, E. (1962), "An anti-Mach metric" (PDF), Recent Developments in General Relativity: 339–350, Bibcode:1962rdgr.book..339O
  2. ^ Pirani, F. A. E. (1957), "Invariant Formulation of Gravitational Radiation Theory", Phys. Rev., 105 (3): 1089–1099, Bibcode:1957PhRv..105.1089P, doi:10.1103/PhysRev.105.1089


This page was last edited on 23 October 2022, at 10:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.