To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Oxidative deamination

From Wikipedia, the free encyclopedia

Oxidative deamination is a form of deamination that generates α-keto acids and other oxidized products from amine-containing compounds, and occurs primarily in the liver.[1] Oxidative deamination is stereospecific, meaning it contains different stereoisomers as reactants and products; this process is either catalyzed by L or D- amino acid oxidase and L-amino acid oxidase is present only in the liver and kidney.[2] Oxidative deamination is an important step in the catabolism of amino acids, generating a more metabolizable form of the amino acid, and also generating ammonia as a toxic byproduct. The ammonia generated in this process can then be neutralized into urea via the urea cycle.

Much of the oxidative deamination occurring in cells involves the amino acid glutamate, which can be oxidatively deaminated by the enzyme glutamate dehydrogenase (GDH), using NAD or NADP as a coenzyme. This reaction generates α-ketoglutarate (α-KG) and ammonia. Glutamate can then be regenerated from α-KG via the action of transaminases or aminotransferase, which catalyze the transfer of an amino group from an amino acid to an α-keto acid. In this manner, an amino acid can transfer its amine group to glutamate, after which GDH can then liberate ammonia via oxidative deamination. This is a common pathway during amino acid catabolism.[3]

Another enzyme responsible for oxidative deamination is monoamine oxidase, which catalyzes the deamination of monoamines via addition of oxygen. This generates the corresponding ketone- or aldehyde-containing form of the molecule, and generates ammonia. Monoamine oxidases MAO-A and MAO-B play vital roles in the degradation and inactivation of monoamine neurotransmitters such as serotonin and epinephrine.[4] Monoamine oxidases are important drug targets, targeted by MAO inhibitors (MAOIs) such as selegiline. Glutamate dehydrogenase play an important role in oxidative deamination.

YouTube Encyclopedic

  • 1/3
    Views:
    25 661
    68 469
    3 710
  • Oxidative deamination of amino acids
  • Oxidative deamination
  • Oxidative Deamination + transport of ammonia, Amioacid metabolism, #biochemistry

Transcription

References

  1. ^ LibreTexts, Chemistry (29 August 2020). "Stage II of Protein Catabolism". Chemistry LibreTexts. Retrieved 5 December 2020.
  2. ^ Bhagavan & Ha, N.V.,Chung-Eun (2015). Essentials Of Medical Biochemistry With Clinical Cases. USA: Elsevier. pp. 231–233. ISBN 9780124166974.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ "Amino Acid Catabolism: Nitrogen". Rensselaer Polytechnic Institute. Archived from the original on 29 June 2017. Retrieved 20 June 2017.
  4. ^ Edmondson DE, Mattevi A, Binda C, Li M, Hubálek F (August 2004). "Structure and mechanism of monoamine oxidase". Current Medicinal Chemistry. 11 (15): 1983–93. doi:10.2174/0929867043364784. PMID 15279562.

External links


This page was last edited on 13 March 2024, at 14:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.