To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Dixon rings are a form of random packing used in chemical processing. They consist of a stainless steel mesh formed into a ring with a central divider, and are intended to be packed randomly into a packed column. Dixon rings provide a large surface area and low pressure drop while maintaining a high mass transfer rate, making them useful for distillations and many other applications.

YouTube Encyclopedic

  • 1/3
    Views:
    984
    1 138
    9 258
  • Dixon Rings an Introduction
  • A technical introduction to Dixon Rings
  • 3D animation Dry Disconnect Coupling

Transcription

Background

Packed columns

Packed columns are used in a range of industries to allow intimate contact between two immiscible fluids which can be liquid/liquid or liquid/gas. The fluids are passed through in a countercurrent flow through a column.

Random column packing

Random column packing used to characterize the maximum volume fraction of a solid object obtained when they are packed randomly. This method of packing has been used since the early 1820s; the types of packing used were originally made out of glass spheres. However, in 1850 they were replaced by a more porous pumice stone and pieces of coke.

In the early 20th century Friedrich Raschig realized the importance of a high void fraction and having the internal surface of the packing media take part in the mass transfer. He designed the Raschig ring, which was more effective than previous forms of random packing and became very popular. Raschig rings are usually built from ceramic or metal and provided a large surface area within the column for interaction between liquid and gas vapors.

The development of the Dixon ring

In 1943 Dr Olaf George Dixon of ICI applied for a patent of a new product for column distillation.[1] He used stainless steel mesh instead of sheet steel in the Lessing ring in order to improve the pressure drop of the packed column (in fact, they were called "wire gauze Lessing rings" in a 1949 publication[2]).

Application

Dixon rings

Dixon rings are used for mainly for laboratory distillation applications.

Performance principles

The enhanced performance of the Dixon ring is based on liquid surface tension: when the mesh is wet its surface area increases greatly, with an accompanying increase in the rate of mass transfer. Dixon rings require pre-wetting (flow of liquid over the packed bed prior to starting the reaction flow). While this increases batch processing startup time, the increased performance of the Dixon ring overcomes this.

[3] [4] [5]

Table showing the physical properties of Dixon rings
Property Ring size
116" 18" 14"
Surface area 3550 2378 900
Void space % 94.63 90.98 90.73
Number per litre 102,000 24,400 2,965

See also

References

  1. ^ U.S. patent 2615832A
  2. ^ "Transactions". 1949.
  3. ^ Kaba, Akira; Akai, Reijiro; Yamamoto, Ichiro; Kanagawa, Akira (October 1988). "Measurement of HETP of SUS Dixon Ring and Porcelain Packing in Small-Scale Water Distillation Column for H2O-HTO Isotope Separation". Nuclear Science and Technology. 25 (10): 69–74.
  4. ^ Sheng, Miaopeng; Liu, Chenguang; Ge, Chunyuan; Arowo, Moses; Xiang, Yang; Sun, Baochang; Chu, Guangwen; Zou, Haikui (2016). "Mass-Transfer Performance of CO2 Absorption with Aqueous Diethylenetriamine-Based Solutions in a Packed Column with Dixon Rings". Industrial & Engineering Chemistry Research. 55 (40): 10788–10793. doi:10.1021/acs.iecr.6b02280.
  5. ^ Jin, Yanchao; Hu, Runzhi; Wang, Yiping; Cui, Yong; Liu, Yun; Huang, Qunwu (2017). "The effect of Dixon rings on direct contact heat transfer performance: Comparison of counter and co-current evaporation". Applied Thermal Engineering. 117: 762–772. doi:10.1016/j.applthermaleng.2017.02.054. ISSN 1359-4311.
This page was last edited on 12 May 2024, at 01:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.