To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bernstein's problem

From Wikipedia, the free encyclopedia

In differential geometry, Bernstein's problem is as follows: if the graph of a function on Rn−1 is a minimal surface in Rn, does this imply that the function is linear? This is true for n at most 8, but false for n at least 9. The problem is named for Sergei Natanovich Bernstein who solved the case n = 3 in 1914.

YouTube Encyclopedic

  • 1/3
    Views:
    735
    1 139
    4 553
  • A small discussion on Genetic Algebra
  • Estimulação precoce em UTI neonatal
  • Gerald Edelman, Nobel Prize in Physiology or Medicine 1972: In-depth interview

Transcription

Statement

Suppose that f is a function of n − 1 real variables. The graph of f is a surface in Rn, and the condition that this is a minimal surface is that f satisfies the minimal surface equation

Bernstein's problem asks whether an entire function (a function defined throughout Rn−1 ) that solves this equation is necessarily a degree-1 polynomial.

History

Bernstein (1915–1917) proved Bernstein's theorem that a graph of a real function on R2 that is also a minimal surface in R3 must be a plane.

Fleming (1962) gave a new proof of Bernstein's theorem by deducing it from the fact that there is no non-planar area-minimizing cone in R3.

De Giorgi (1965) showed that if there is no non-planar area-minimizing cone in Rn−1 then the analogue of Bernstein's theorem is true for graphs in Rn, which in particular implies that it is true in R4.

Almgren (1966) showed there are no non-planar minimizing cones in R4, thus extending Bernstein's theorem to R5.

Simons (1968) showed there are no non-planar minimizing cones in R7, thus extending Bernstein's theorem to R8. He also showed that the surface defined by

is a locally stable cone in R8, and asked if it is globally area-minimizing.

Bombieri, De Giorgi & Giusti (1969) showed that Simons' cone is indeed globally minimizing, and that in Rn for n≥9 there are graphs that are minimal, but not hyperplanes. Combined with the result of Simons, this shows that the analogue of Bernstein's theorem is true in Rn for n≤8, and false in higher dimensions.

References

External links

This page was last edited on 5 March 2024, at 15:40
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.