To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

1,1'-Bis(diphenylphosphino)ferrocene

From Wikipedia, the free encyclopedia

1,1-Bis(diphenylphosphino)­ferrocene
Names
Preferred IUPAC name
(Ferrocene-1,1-diyl)bis(diphenylphosphane)
Other names
1,1-Bis(diphenylphosphino)ferrocene, 1,1-ferrocenediylbis(diphenylphosphine), Dppf, 1,1-ferrocenebis(diphenylphosphine), 1,1-bis(diphenylphosphanyl)ferrocene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.167.773 Edit this at Wikidata
EC Number
  • 640-119-0
24075
UNII
  • InChI=1S/2C17H14P.Fe/c2*1-3-9-15(10-4-1)18(17-13-7-8-14-17)16-11-5-2-6-12-16;/h2*1-14H; checkY
    Key: HPXNTHKXCYMIJL-UHFFFAOYSA-N checkY
  • InChI=1/2C17H14P.Fe/c2*1-3-9-15(10-4-1)18(17- -13-7-8-14-17)16-11-5-2-6-12-16;/h2*1-14H;/q2*-1;+2
    Key: HPXNTHKXCYMIJL-UHFFFAOYSA-N
  • InChI=1/2C17H14P.Fe/c2*1-3-9-15(10-4-1)18(17-13-7-8-14-17)16-11-5-2-6-12-16;/h2*1-14H;/rC34H28FeP2/c1-5-13-21(14-6-1)36(22-15-7-2-8-16-22)33-29-25-26-30(33)35(25,26,29,33)27-28(35)32(35)34(35,31(27)35)37(23-17-9-3-10-18-23)24-19-11-4-12-20-24/h1-20,25-32H
    Key: HPXNTHKXCYMIJL-KDKHWAOJAX
  • c1ccc(cc1)P(c2ccccc2)C34C5[Fe]3678912(C5C6C74)C3C8C9C1(C23)P(c1ccccc1)c1ccccc1
  • C1=CC=C(C=C1)P([C-]2C=CC=C2)C3=CC=CC=C3.C1=CC=C(C=C1)P([C-]2C=CC=C2)C3=CC=CC=C3.[Fe+2]
Properties
C34H28FeP2
Molar mass 554.391
Melting point 181 to 183 °C (358 to 361 °F; 454 to 456 K)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:
GHS07: Exclamation mark
GHS08: Health hazard
Warning
H302, H312, H315, H319, H332
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

1,1-Bis(diphenylphosphino)ferrocene, commonly abbreviated dppf, is an organophosphorus compound commonly used as a ligand in homogeneous catalysis. It contains a ferrocene moiety in its backbone, and is related to other bridged diphosphines such as 1,2-bis(diphenylphosphino)ethane (dppe).

Preparation

This compound is commercially available. It may be prepared by treating dilithioferrocene with chlorodiphenylphosphine:[1]

Fe(C5H4Li)2 + 2 ClPPh2 → Fe(C5H4PPh2)2 + 2 LiCl

The dilithiation of ferrocene is easily achieved with n-butyllithium in the presence of TMEDA. Many related ligands can be made in this way. The Fe center is typically not involved in the behavior of the ligand.

Reactions

Dppf readily forms metal complexes.[2] The palladium derivative, (dppf)PdCl2, which is popular for palladium-catalyzed coupling reactions, is prepared by treating dppf with the acetonitrile or benzonitrile adducts of palladium dichloride:[2] Substitution of the phenyl substituents in dppf leads to derivatives with modified donor-acceptor properties at the phosphorus atoms.[3]

dppf + PdCl2(RCN)2 → (dppf)PdCl2 + 2 RCN (RCN = acetonitrile or benzonitrile)
Structure of the complex PtCl2(dppf)

Another example of dppf in homogeneous catalysis is provided by the air- and moisture-stable Ni(II) precatalyst [(dppf)Ni(cinnamyl)Cl. It promotes Suzuki-Miyuara cross-coupling of heteroaryl boronic acids with nitrogen- and sulfur-containing heteroaryl halides.[4]

Synthesis of [(dppf)Ni(cinnamyl)Cl)]

Another dppf-based catalyst is (dppf)Ni(o-tolyl)Cl, can be prepared from ligand exchange with (PPh3)2Ni(o-tolyl)Cl. It promotes the amination of aryl chlorides, sulfamates, mesylates, and triflates.[5]

Synthesis of (dppf)Ni(o-tolyl)Cl

See also

References

  1. ^ Ian R. Butler (2010). "3.15 The Use of Organolithium Reagents in the Preparation of Ferrocene Derivatives" (Google Books excerpt). In J. Derek Woollins (ed.). Inorganic Experiments. John Wiley & Sons. pp. 175–179. ISBN 978-3-527-32472-9.
  2. ^ a b Nataro, Chip; Fosbenner, Stephanie M. (2009). "Synthesis and Characterization of Transition-Metal Complexes Containing 1,1-Bis(diphenylphosphino)ferrocene". J. Chem. Educ. 86 (12): 1412. Bibcode:2009JChEd..86.1412N. doi:10.1021/ed086p1412.
  3. ^ Dey, Subhayan; Pietschnig, Rudolf (2021). "Chemistry of sterically demanding dppf-analogs". Coord. Chem. Rev. 437: 213850. doi:10.1016/j.ccr.2021.213850.
  4. ^ Ge, Shaozhong; Hartwig, John F. (2012-12-14). "Highly Reactive, Single-Component Nickel Catalyst Precursor for Suzuki–Miyuara Cross-Coupling of Heteroaryl Boronic Acids with Heteroaryl Halides". Angewandte Chemie International Edition. 51 (51): 12837–12841. doi:10.1002/anie.201207428. PMC 3613336. PMID 23136047.
  5. ^ Park, Nathaniel H.; Teverovskiy, Georgiy; Buchwald, Stephen L. (2014-01-03). "Development of an Air-Stable Nickel Precatalyst for the Amination of Aryl Chlorides, Sulfamates, Mesylates, and Triflates". Organic Letters. 16 (1): 220–223. doi:10.1021/ol403209k. PMC 3926134. PMID 24283652.
This page was last edited on 11 January 2024, at 13:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.